Properties

Label 4.3e4_7e3_23e2.5t5.2
Dimension 4
Group $\PGL(2,5)$
Conductor $ 3^{4} \cdot 7^{3} \cdot 23^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PGL(2,5)$
Conductor:$14697207= 3^{4} \cdot 7^{3} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 3 x^{4} + 6 x^{2} + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 20 + \left(29 a + 35\right)\cdot 53 + \left(44 a + 39\right)\cdot 53^{2} + \left(23 a + 51\right)\cdot 53^{3} + \left(7 a + 47\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 23\cdot 53 + 25\cdot 53^{2} + 23\cdot 53^{3} + 20\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 a + 4 + \left(35 a + 33\right)\cdot 53 + \left(4 a + 26\right)\cdot 53^{2} + \left(39 a + 28\right)\cdot 53^{3} + \left(27 a + 37\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 a + 51 + \left(17 a + 43\right)\cdot 53 + \left(48 a + 9\right)\cdot 53^{2} + \left(13 a + 21\right)\cdot 53^{3} + \left(25 a + 3\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 38 a + 27 + \left(23 a + 31\right)\cdot 53 + \left(8 a + 29\right)\cdot 53^{2} + \left(29 a + 49\right)\cdot 53^{3} + 45 a\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 50 + 44\cdot 53 + 27\cdot 53^{2} + 37\cdot 53^{3} + 48\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,2,6,3,4)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)(3,6)(4,5)$ $2$
$15$ $2$ $(2,6)(3,4)$ $0$
$20$ $3$ $(1,2,3)(4,5,6)$ $1$
$30$ $4$ $(2,4,6,3)$ $0$
$24$ $5$ $(1,6,4,2,5)$ $-1$
$20$ $6$ $(1,5,2,6,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.