Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 127 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 24\cdot 127 + 63\cdot 127^{2} + 31\cdot 127^{3} + 118\cdot 127^{4} + 99\cdot 127^{5} +O\left(127^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 28 + 95\cdot 127 + 19\cdot 127^{2} + 36\cdot 127^{3} + 25\cdot 127^{4} + 117\cdot 127^{5} +O\left(127^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 42 + 91\cdot 127 + 124\cdot 127^{2} + 121\cdot 127^{3} + 62\cdot 127^{4} + 73\cdot 127^{5} +O\left(127^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 62 + 73\cdot 127 + 81\cdot 127^{2} + 105\cdot 127^{3} + 66\cdot 127^{4} + 107\cdot 127^{5} +O\left(127^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 83 + 25\cdot 127 + 48\cdot 127^{2} + 16\cdot 127^{3} + 46\cdot 127^{4} + 96\cdot 127^{5} +O\left(127^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 91 + 91\cdot 127 + 70\cdot 127^{2} + 90\cdot 127^{3} + 51\cdot 127^{4} + 105\cdot 127^{5} +O\left(127^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 96 + 26\cdot 127 + 58\cdot 127^{2} + 19\cdot 127^{3} + 41\cdot 127^{4} + 61\cdot 127^{5} +O\left(127^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 109 + 79\cdot 127 + 41\cdot 127^{2} + 86\cdot 127^{3} + 95\cdot 127^{4} + 100\cdot 127^{5} +O\left(127^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2,6,8,5,3,4,7)$ |
| $(1,8)(2,6)(3,4)(5,7)$ |
| $(1,5)(4,6)$ |
| $(1,5)(2,3)(4,6)(7,8)$ |
| $(1,4,5,6)(2,8,3,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,5)(2,3)(4,6)(7,8)$ | $-4$ |
| $2$ | $2$ | $(1,5)(4,6)$ | $0$ |
| $4$ | $2$ | $(1,6)(4,5)(7,8)$ | $0$ |
| $4$ | $2$ | $(1,8)(2,6)(3,4)(5,7)$ | $0$ |
| $4$ | $2$ | $(2,8)(3,7)(4,6)$ | $0$ |
| $2$ | $4$ | $(1,6,5,4)(2,8,3,7)$ | $0$ |
| $2$ | $4$ | $(1,4,5,6)(2,8,3,7)$ | $0$ |
| $4$ | $4$ | $(1,8,5,7)(2,4,3,6)$ | $0$ |
| $4$ | $8$ | $(1,2,6,8,5,3,4,7)$ | $0$ |
| $4$ | $8$ | $(1,2,4,7,5,3,6,8)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.