Properties

Label 4.3e4_7e2_37e2.8t15.2
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 3^{4} \cdot 7^{2} \cdot 37^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$5433561= 3^{4} \cdot 7^{2} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 11 x^{6} - 33 x^{5} + 57 x^{4} - 108 x^{3} + 149 x^{2} - 90 x + 127 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 24\cdot 127 + 63\cdot 127^{2} + 31\cdot 127^{3} + 118\cdot 127^{4} + 99\cdot 127^{5} +O\left(127^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 28 + 95\cdot 127 + 19\cdot 127^{2} + 36\cdot 127^{3} + 25\cdot 127^{4} + 117\cdot 127^{5} +O\left(127^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 42 + 91\cdot 127 + 124\cdot 127^{2} + 121\cdot 127^{3} + 62\cdot 127^{4} + 73\cdot 127^{5} +O\left(127^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 62 + 73\cdot 127 + 81\cdot 127^{2} + 105\cdot 127^{3} + 66\cdot 127^{4} + 107\cdot 127^{5} +O\left(127^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 83 + 25\cdot 127 + 48\cdot 127^{2} + 16\cdot 127^{3} + 46\cdot 127^{4} + 96\cdot 127^{5} +O\left(127^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 91 + 91\cdot 127 + 70\cdot 127^{2} + 90\cdot 127^{3} + 51\cdot 127^{4} + 105\cdot 127^{5} +O\left(127^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 96 + 26\cdot 127 + 58\cdot 127^{2} + 19\cdot 127^{3} + 41\cdot 127^{4} + 61\cdot 127^{5} +O\left(127^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 109 + 79\cdot 127 + 41\cdot 127^{2} + 86\cdot 127^{3} + 95\cdot 127^{4} + 100\cdot 127^{5} +O\left(127^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,6,8,5,3,4,7)$
$(1,8)(2,6)(3,4)(5,7)$
$(1,5)(4,6)$
$(1,5)(2,3)(4,6)(7,8)$
$(1,4,5,6)(2,8,3,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,5)(2,3)(4,6)(7,8)$ $-4$
$2$ $2$ $(1,5)(4,6)$ $0$
$4$ $2$ $(1,6)(4,5)(7,8)$ $0$
$4$ $2$ $(1,8)(2,6)(3,4)(5,7)$ $0$
$4$ $2$ $(2,8)(3,7)(4,6)$ $0$
$2$ $4$ $(1,6,5,4)(2,8,3,7)$ $0$
$2$ $4$ $(1,4,5,6)(2,8,3,7)$ $0$
$4$ $4$ $(1,8,5,7)(2,4,3,6)$ $0$
$4$ $8$ $(1,2,6,8,5,3,4,7)$ $0$
$4$ $8$ $(1,2,4,7,5,3,6,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.