Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 127 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 + 70\cdot 127 + 92\cdot 127^{2} + 91\cdot 127^{3} + 6\cdot 127^{4} + 85\cdot 127^{5} +O\left(127^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 24 + 127 + 35\cdot 127^{2} + 22\cdot 127^{3} + 81\cdot 127^{4} + 46\cdot 127^{5} +O\left(127^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 28 + 69\cdot 127 + 93\cdot 127^{2} + 5\cdot 127^{3} + 34\cdot 127^{4} + 9\cdot 127^{5} +O\left(127^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 34 + 54\cdot 127 + 93\cdot 127^{2} + 54\cdot 127^{3} + 116\cdot 127^{4} + 94\cdot 127^{5} +O\left(127^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 85 + 15\cdot 127 + 97\cdot 127^{2} + 93\cdot 127^{3} + 67\cdot 127^{4} + 39\cdot 127^{5} +O\left(127^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 102 + 111\cdot 127 + 65\cdot 127^{2} + 119\cdot 127^{3} + 108\cdot 127^{4} +O\left(127^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 109 + 59\cdot 127 + 107\cdot 127^{2} + 52\cdot 127^{3} + 47\cdot 127^{4} + 21\cdot 127^{5} +O\left(127^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 115 + 125\cdot 127 + 49\cdot 127^{2} + 67\cdot 127^{3} + 45\cdot 127^{4} + 83\cdot 127^{5} +O\left(127^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2,3,8)(4,5,6,7)$ |
| $(1,3)(2,8)(4,6)(5,7)$ |
| $(1,4,7,2,3,6,5,8)$ |
| $(1,7,3,5)(2,4,8,6)$ |
| $(1,3)(5,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,3)(2,8)(4,6)(5,7)$ |
$-4$ |
| $2$ |
$2$ |
$(1,3)(5,7)$ |
$0$ |
| $4$ |
$2$ |
$(1,7)(3,5)(4,6)$ |
$0$ |
| $4$ |
$2$ |
$(1,3)(2,4)(6,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,4)(2,5)(3,6)(7,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,3,5)(2,6,8,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,3,5)(2,4,8,6)$ |
$0$ |
| $4$ |
$4$ |
$(1,8,3,2)(4,7,6,5)$ |
$0$ |
| $4$ |
$8$ |
$(1,4,7,2,3,6,5,8)$ |
$0$ |
| $4$ |
$8$ |
$(1,8,7,4,3,2,5,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.