Properties

Label 4.3e4_7e2_19e2.8t15.4
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 3^{4} \cdot 7^{2} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$1432809= 3^{4} \cdot 7^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + x^{6} + 11 x^{5} - 14 x^{4} + 5 x^{3} + 28 x^{2} - 28 x + 49 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 463 }$ to precision 10.
Roots:
$r_{ 1 }$ $=$ $ 43 + 329\cdot 463 + 227\cdot 463^{2} + 446\cdot 463^{3} + 173\cdot 463^{4} + 172\cdot 463^{5} + 266\cdot 463^{6} + 128\cdot 463^{7} + 461\cdot 463^{8} + 175\cdot 463^{9} +O\left(463^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 84 + 263\cdot 463 + 248\cdot 463^{2} + 77\cdot 463^{3} + 267\cdot 463^{4} + 296\cdot 463^{5} + 90\cdot 463^{6} + 37\cdot 463^{7} + 211\cdot 463^{8} + 358\cdot 463^{9} +O\left(463^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 107 + 89\cdot 463 + 35\cdot 463^{2} + 428\cdot 463^{3} + 179\cdot 463^{4} + 338\cdot 463^{5} + 296\cdot 463^{6} + 292\cdot 463^{7} + 54\cdot 463^{8} + 440\cdot 463^{9} +O\left(463^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 155 + 356\cdot 463 + 220\cdot 463^{2} + 327\cdot 463^{3} + 23\cdot 463^{4} + 348\cdot 463^{5} + 392\cdot 463^{6} + 49\cdot 463^{7} + 218\cdot 463^{8} + 183\cdot 463^{9} +O\left(463^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 309 + 106\cdot 463 + 242\cdot 463^{2} + 135\cdot 463^{3} + 439\cdot 463^{4} + 114\cdot 463^{5} + 70\cdot 463^{6} + 413\cdot 463^{7} + 244\cdot 463^{8} + 279\cdot 463^{9} +O\left(463^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 357 + 373\cdot 463 + 427\cdot 463^{2} + 34\cdot 463^{3} + 283\cdot 463^{4} + 124\cdot 463^{5} + 166\cdot 463^{6} + 170\cdot 463^{7} + 408\cdot 463^{8} + 22\cdot 463^{9} +O\left(463^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 380 + 199\cdot 463 + 214\cdot 463^{2} + 385\cdot 463^{3} + 195\cdot 463^{4} + 166\cdot 463^{5} + 372\cdot 463^{6} + 425\cdot 463^{7} + 251\cdot 463^{8} + 104\cdot 463^{9} +O\left(463^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 421 + 133\cdot 463 + 235\cdot 463^{2} + 16\cdot 463^{3} + 289\cdot 463^{4} + 290\cdot 463^{5} + 196\cdot 463^{6} + 334\cdot 463^{7} + 463^{8} + 287\cdot 463^{9} +O\left(463^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,2)(4,5)(7,8)$
$(1,2,8,7)(3,5,6,4)$
$(1,8)(2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,8)(2,7)$ $0$
$4$ $2$ $(1,2)(4,5)(7,8)$ $0$
$4$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$
$4$ $2$ $(1,7)(2,8)(4,5)$ $0$
$2$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$
$4$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$
$4$ $8$ $(1,5,2,6,8,4,7,3)$ $0$
$4$ $8$ $(1,4,7,6,8,5,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.