Properties

Label 4.3e4_7e2_19e2.8t15.2
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 3^{4} \cdot 7^{2} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$1432809= 3^{4} \cdot 7^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 2 x^{5} + 7 x^{4} - 9 x^{3} + 27 x^{2} - 42 x + 21 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 463 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 115 + 220\cdot 463 + 428\cdot 463^{2} + 74\cdot 463^{3} + 343\cdot 463^{4} +O\left(463^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 202 + 120\cdot 463 + 443\cdot 463^{2} + 142\cdot 463^{3} + 222\cdot 463^{4} +O\left(463^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 368 + 431\cdot 463 + 54\cdot 463^{2} + 285\cdot 463^{3} + 420\cdot 463^{4} +O\left(463^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 391 + 108\cdot 463 + 262\cdot 463^{2} + 371\cdot 463^{3} + 293\cdot 463^{4} +O\left(463^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 404 + 137\cdot 463 + 187\cdot 463^{2} + 313\cdot 463^{3} + 18\cdot 463^{4} +O\left(463^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 416 + 235\cdot 463 + 240\cdot 463^{2} + 184\cdot 463^{3} + 264\cdot 463^{4} +O\left(463^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 432 + 42\cdot 463 + 283\cdot 463^{2} + 2\cdot 463^{3} + 387\cdot 463^{4} +O\left(463^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 452 + 90\cdot 463 + 415\cdot 463^{2} + 13\cdot 463^{3} + 365\cdot 463^{4} +O\left(463^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,5)(3,6)$
$(1,2,8,5)(3,7,6,4)$
$(1,8)(2,5)(3,6)(4,7)$
$(1,2,7,3,8,5,4,6)$
$(1,4,8,7)(2,3,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,5)(3,6)(4,7)$ $-4$
$2$ $2$ $(2,5)(3,6)$ $0$
$4$ $2$ $(2,3)(4,7)(5,6)$ $0$
$4$ $2$ $(1,4)(2,5)(7,8)$ $0$
$4$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$2$ $4$ $(1,7,8,4)(2,3,5,6)$ $0$
$2$ $4$ $(1,4,8,7)(2,3,5,6)$ $0$
$4$ $4$ $(1,5,8,2)(3,4,6,7)$ $0$
$4$ $8$ $(1,2,7,3,8,5,4,6)$ $0$
$4$ $8$ $(1,3,7,5,8,6,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.