Properties

Label 4.3e4_7e2_17e2.8t15.2c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 3^{4} \cdot 7^{2} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$1147041= 3^{4} \cdot 7^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 4 x^{6} - x^{5} + 7 x^{4} - 10 x^{3} - 8 x^{2} + 14 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 5 + 30\cdot 67 + 27\cdot 67^{2} + 19\cdot 67^{3} + 20\cdot 67^{4} + 60\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 16 + 21\cdot 67 + 18\cdot 67^{2} + 35\cdot 67^{3} + 52\cdot 67^{4} + 18\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 23 + 12\cdot 67 + 66\cdot 67^{2} + 15\cdot 67^{3} + 16\cdot 67^{4} + 60\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 34 + 11\cdot 67 + 38\cdot 67^{2} + 57\cdot 67^{3} + 59\cdot 67^{4} + 5\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 39 + 12\cdot 67 + 45\cdot 67^{2} + 4\cdot 67^{3} + 52\cdot 67^{4} + 13\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 47 + 26\cdot 67 + 58\cdot 67^{2} + 3\cdot 67^{3} + 10\cdot 67^{4} + 12\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 48 + 13\cdot 67 + 48\cdot 67^{2} + 37\cdot 67^{3} + 27\cdot 67^{4} + 64\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 57 + 5\cdot 67 + 33\cdot 67^{2} + 26\cdot 67^{3} + 29\cdot 67^{4} + 32\cdot 67^{5} +O\left(67^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,8)(5,6)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,6,8,3,2,5,7,4)$
$(1,2)(7,8)$
$(1,8,2,7)(3,6,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,4)(5,6)(7,8)$$-4$
$2$$2$$(1,2)(7,8)$$0$
$4$$2$$(1,7)(2,8)(5,6)$$0$
$4$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$4$$2$$(3,6)(4,5)(7,8)$$0$
$2$$4$$(1,8,2,7)(3,5,4,6)$$0$
$2$$4$$(1,8,2,7)(3,6,4,5)$$0$
$4$$4$$(1,4,2,3)(5,7,6,8)$$0$
$4$$8$$(1,6,8,3,2,5,7,4)$$0$
$4$$8$$(1,6,7,4,2,5,8,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.