Properties

Label 4.3e4_7e2_17e2.8t15.1c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 3^{4} \cdot 7^{2} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$1147041= 3^{4} \cdot 7^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 5 x^{6} + 8 x^{5} + 4 x^{4} - 25 x^{3} - 5 x^{2} + 11 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 373 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 72 + 261\cdot 373 + 255\cdot 373^{2} + 264\cdot 373^{3} + 334\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 103 + 265\cdot 373 + 244\cdot 373^{2} + 218\cdot 373^{3} + 143\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 116 + 47\cdot 373 + 130\cdot 373^{2} + 21\cdot 373^{3} + 289\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 260 + 312\cdot 373 + 26\cdot 373^{2} + 108\cdot 373^{3} + 282\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 290 + 16\cdot 373 + 346\cdot 373^{2} + 51\cdot 373^{3} + 290\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 320 + 366\cdot 373 + 179\cdot 373^{2} + 186\cdot 373^{3} + 76\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 338 + 141\cdot 373 + 257\cdot 373^{2} + 52\cdot 373^{3} + 295\cdot 373^{4} +O\left(373^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 367 + 79\cdot 373 + 51\cdot 373^{2} + 215\cdot 373^{3} + 153\cdot 373^{4} +O\left(373^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(4,8)(5,6)$
$(1,7,2,3)(4,8,5,6)$
$(4,5)(6,8)$
$(1,2)(3,7)(4,5)(6,8)$
$(1,8)(2,6)(3,5)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,7)(4,5)(6,8)$$-4$
$2$$2$$(4,5)(6,8)$$0$
$4$$2$$(1,8)(2,6)(3,5)(4,7)$$0$
$4$$2$$(1,2)(4,8)(5,6)$$0$
$4$$2$$(1,2)(4,6)(5,8)$$0$
$2$$4$$(1,7,2,3)(4,8,5,6)$$0$
$2$$4$$(1,7,2,3)(4,6,5,8)$$0$
$4$$4$$(1,6,2,8)(3,4,7,5)$$0$
$4$$8$$(1,4,7,8,2,5,3,6)$$0$
$4$$8$$(1,8,7,5,2,6,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.