Properties

Label 4.3e4_67e2.5t4.1
Dimension 4
Group $A_5$
Conductor $ 3^{4} \cdot 67^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$A_5$
Conductor:$363609= 3^{4} \cdot 67^{2} $
Artin number field: Splitting field of $f= x^{5} - 3 x^{3} - 3 x^{2} + 9 x - 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 389 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 90 + 167\cdot 389 + 17\cdot 389^{2} + 311\cdot 389^{3} + 244\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 225 + 260\cdot 389 + 182\cdot 389^{2} + 139\cdot 389^{3} + 112\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 239 + 194\cdot 389 + 168\cdot 389^{2} + 65\cdot 389^{3} + 181\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 300 + 378\cdot 389 + 265\cdot 389^{2} + 301\cdot 389^{3} + 247\cdot 389^{4} +O\left(389^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 313 + 165\cdot 389 + 143\cdot 389^{2} + 349\cdot 389^{3} + 380\cdot 389^{4} +O\left(389^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$12$ $5$ $(1,2,3,4,5)$ $-1$
$12$ $5$ $(1,3,4,5,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.