Properties

Label 4.3e4_61e3.8t21.1c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 3^{4} \cdot 61^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$18385461= 3^{4} \cdot 61^{3} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 6 x^{6} + 20 x^{5} - 32 x^{4} - 51 x^{3} + 228 x^{2} - 240 x + 129 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.61.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 199 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 4 + 104\cdot 199 + 84\cdot 199^{2} + 11\cdot 199^{3} + 122\cdot 199^{4} + 25\cdot 199^{5} +O\left(199^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 20 + 135\cdot 199 + 141\cdot 199^{2} + 152\cdot 199^{3} + 43\cdot 199^{4} + 79\cdot 199^{5} +O\left(199^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 56 + 142\cdot 199 + 150\cdot 199^{2} + 39\cdot 199^{3} + 135\cdot 199^{4} + 185\cdot 199^{5} +O\left(199^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 59 + 126\cdot 199 + 37\cdot 199^{2} + 78\cdot 199^{3} + 29\cdot 199^{4} + 67\cdot 199^{5} +O\left(199^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 69 + 199 + 3\cdot 199^{2} + 195\cdot 199^{3} + 188\cdot 199^{4} + 71\cdot 199^{5} +O\left(199^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 87 + 81\cdot 199 + 72\cdot 199^{2} + 53\cdot 199^{3} + 155\cdot 199^{4} + 37\cdot 199^{5} +O\left(199^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 129 + 170\cdot 199 + 173\cdot 199^{2} + 101\cdot 199^{3} + 92\cdot 199^{4} + 91\cdot 199^{5} +O\left(199^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 174 + 34\cdot 199 + 132\cdot 199^{2} + 163\cdot 199^{3} + 28\cdot 199^{4} + 38\cdot 199^{5} +O\left(199^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,2)(4,6,5,7)$
$(1,8)(2,6)(3,7)(4,5)$
$(1,4)(5,8)$
$(1,4)(2,7)(3,6)(5,8)$
$(1,7,4,2)(3,5,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,4)(2,7)(3,6)(5,8)$$-4$
$2$$2$$(1,8)(2,6)(3,7)(4,5)$$0$
$2$$2$$(1,8)(2,3)(4,5)(6,7)$$0$
$2$$2$$(2,7)(3,6)$$0$
$4$$2$$(1,2)(3,5)(4,7)(6,8)$$0$
$4$$4$$(1,7,4,2)(3,5,6,8)$$0$
$4$$4$$(1,2,8,3)(4,7,5,6)$$0$
$4$$4$$(1,3,8,2)(4,6,5,7)$$0$
$4$$4$$(1,4)(2,3,7,6)$$0$
$4$$4$$(1,4)(2,6,7,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.