Properties

Label 4.3e4_5e8.5t4.2
Dimension 4
Group $A_5$
Conductor $ 3^{4} \cdot 5^{8}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$A_5$
Conductor:$31640625= 3^{4} \cdot 5^{8} $
Artin number field: Splitting field of $f= x^{5} - 25 x^{2} + 75 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 22 + 5\cdot 71 + 2\cdot 71^{2} + 46\cdot 71^{3} + 41\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 55\cdot 71 + 64\cdot 71^{2} + 5\cdot 71^{3} + 13\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 36 + 70\cdot 71 + 18\cdot 71^{2} + 57\cdot 71^{3} + 31\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 63 + 44\cdot 71 + 58\cdot 71^{2} + 67\cdot 71^{3} + 42\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 67 + 36\cdot 71 + 68\cdot 71^{2} + 35\cdot 71^{3} + 12\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$12$ $5$ $(1,2,3,4,5)$ $-1$
$12$ $5$ $(1,3,4,5,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.