Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 191 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 + 60\cdot 191 + 16\cdot 191^{2} + 146\cdot 191^{3} + 152\cdot 191^{4} + 190\cdot 191^{5} + 11\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 29 + 182\cdot 191 + 182\cdot 191^{2} + 86\cdot 191^{3} + 123\cdot 191^{4} + 4\cdot 191^{5} + 3\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 74 + 46\cdot 191 + 112\cdot 191^{2} + 187\cdot 191^{3} + 47\cdot 191^{4} + 36\cdot 191^{5} + 122\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 82 + 93\cdot 191 + 70\cdot 191^{2} + 152\cdot 191^{3} + 57\cdot 191^{4} + 150\cdot 191^{5} + 53\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 105 + 83\cdot 191 + 153\cdot 191^{2} + 163\cdot 191^{3} + 7\cdot 191^{4} + 59\cdot 191^{5} + 53\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 129 + 2\cdot 191 + 60\cdot 191^{2} + 25\cdot 191^{3} + 152\cdot 191^{4} + 5\cdot 191^{5} + 88\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 151 + 150\cdot 191 + 26\cdot 191^{2} + 82\cdot 191^{3} + 58\cdot 191^{4} + 144\cdot 191^{5} + 168\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 189 + 144\cdot 191 + 141\cdot 191^{2} + 110\cdot 191^{3} + 163\cdot 191^{4} + 172\cdot 191^{5} + 71\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,5,6,2,4,8,7,3)$ |
| $(2,3)(6,7)$ |
| $(5,8)(6,7)$ |
| $(1,7)(2,8)(3,5)(4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,4)(2,3)(5,8)(6,7)$ |
$-4$ |
| $2$ |
$2$ |
$(1,4)(6,7)$ |
$0$ |
| $4$ |
$2$ |
$(1,7)(2,8)(3,5)(4,6)$ |
$0$ |
| $4$ |
$2$ |
$(1,4)(2,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,4,7)(2,8,3,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,4,7)(2,5,3,8)$ |
$0$ |
| $4$ |
$8$ |
$(1,5,6,2,4,8,7,3)$ |
$0$ |
| $4$ |
$8$ |
$(1,2,7,5,4,3,6,8)$ |
$0$ |
| $4$ |
$8$ |
$(1,8,6,2,4,5,7,3)$ |
$0$ |
| $4$ |
$8$ |
$(1,2,7,8,4,3,6,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.