Properties

Label 4.3e4_5e4_17e2.8t23.1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 3^{4} \cdot 5^{4} \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$14630625= 3^{4} \cdot 5^{4} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} + 3 x^{6} - 30 x^{4} - 15 x^{3} + 21 x^{2} + 30 x - 21 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 26 + \left(8 a + 22\right)\cdot 29 + \left(24 a + 6\right)\cdot 29^{2} + \left(5 a + 26\right)\cdot 29^{3} + \left(11 a + 23\right)\cdot 29^{4} + \left(25 a + 4\right)\cdot 29^{5} + \left(16 a + 25\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 2 + 24\cdot 29 + 18\cdot 29^{2} + 12\cdot 29^{3} + 24\cdot 29^{4} + 9\cdot 29^{5} + 3\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 4 a + \left(20 a + 21\right)\cdot 29 + \left(17 a + 3\right)\cdot 29^{2} + \left(3 a + 20\right)\cdot 29^{3} + \left(10 a + 2\right)\cdot 29^{4} + \left(22 a + 10\right)\cdot 29^{5} + 12 a\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 25 a + 20 + \left(8 a + 1\right)\cdot 29 + \left(11 a + 14\right)\cdot 29^{2} + \left(25 a + 20\right)\cdot 29^{3} + \left(18 a + 20\right)\cdot 29^{4} + \left(6 a + 24\right)\cdot 29^{5} + \left(16 a + 12\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 27 a + 18 + \left(16 a + 13\right)\cdot 29 + \left(13 a + 7\right)\cdot 29^{2} + \left(22 a + 2\right)\cdot 29^{3} + \left(9 a + 24\right)\cdot 29^{4} + \left(16 a + 8\right)\cdot 29^{5} + \left(17 a + 12\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 8 + \left(12 a + 13\right)\cdot 29 + 15 a\cdot 29^{2} + \left(6 a + 14\right)\cdot 29^{3} + \left(19 a + 21\right)\cdot 29^{4} + \left(12 a + 22\right)\cdot 29^{5} + \left(11 a + 25\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 14 + 24\cdot 29 + 2\cdot 29^{2} + 18\cdot 29^{3} + 11\cdot 29^{4} + 29^{5} + 10\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 17 a + 28 + \left(20 a + 23\right)\cdot 29 + \left(4 a + 3\right)\cdot 29^{2} + \left(23 a + 2\right)\cdot 29^{3} + \left(17 a + 16\right)\cdot 29^{4} + \left(3 a + 4\right)\cdot 29^{5} + \left(12 a + 26\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,3,8)(2,6,7,5)$
$(2,8,5)(4,6,7)$
$(1,7,3,2)(4,6,8,5)$
$(1,3)(2,7)(4,8)(5,6)$
$(2,6)(4,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,3)(2,7)(4,8)(5,6)$ $-4$
$12$ $2$ $(2,6)(4,8)(5,7)$ $0$
$8$ $3$ $(1,6,2)(3,5,7)$ $1$
$6$ $4$ $(1,7,3,2)(4,6,8,5)$ $0$
$8$ $6$ $(1,7,6,3,2,5)(4,8)$ $-1$
$6$ $8$ $(1,5,8,7,3,6,4,2)$ $0$
$6$ $8$ $(1,6,8,2,3,5,4,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.