Properties

Label 4.3e4_5e4_11e2.8t16.2c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 3^{4} \cdot 5^{4} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$6125625= 3^{4} \cdot 5^{4} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 12 x^{6} + 16 x^{5} + 75 x^{4} - 59 x^{3} - 217 x^{2} + 78 x + 241 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 16 + 65\cdot 71 + 51\cdot 71^{2} + 46\cdot 71^{3} + 14\cdot 71^{4} + 61\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 25 + 63\cdot 71 + 51\cdot 71^{2} + 35\cdot 71^{3} + 32\cdot 71^{4} + 56\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 29 + 30\cdot 71 + 25\cdot 71^{2} + 33\cdot 71^{3} + 66\cdot 71^{4} + 9\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 31 + 35\cdot 71 + 56\cdot 71^{2} + 54\cdot 71^{3} + 22\cdot 71^{4} + 20\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 32 + 62\cdot 71 + 40\cdot 71^{3} + 59\cdot 71^{4} + 40\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 42 + 55\cdot 71 + 71^{2} + 36\cdot 71^{3} + 15\cdot 71^{4} + 19\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 51 + 13\cdot 71 + 59\cdot 71^{2} + 13\cdot 71^{3} + 64\cdot 71^{4} + 70\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 60 + 28\cdot 71 + 36\cdot 71^{2} + 23\cdot 71^{3} + 8\cdot 71^{4} + 5\cdot 71^{5} +O\left(71^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(5,7)(6,8)$
$(3,4)(6,8)$
$(1,6,2,8)(3,7,4,5)$
$(1,5,6,3,2,7,8,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,4)(5,7)(6,8)$$-4$
$2$$2$$(3,4)(5,7)$$0$
$4$$2$$(5,7)(6,8)$$0$
$4$$2$$(1,6)(2,8)(3,7)(4,5)$$0$
$2$$4$$(1,6,2,8)(3,7,4,5)$$0$
$2$$4$$(1,6,2,8)(3,5,4,7)$$0$
$4$$8$$(1,5,6,3,2,7,8,4)$$0$
$4$$8$$(1,3,8,5,2,4,6,7)$$0$
$4$$8$$(1,7,6,3,2,5,8,4)$$0$
$4$$8$$(1,3,8,7,2,4,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.