Properties

Label 4.3e4_5e2_7e4.8t26.1c1
Dimension 4
Group $(C_4^2 : C_2):C_2$
Conductor $ 3^{4} \cdot 5^{2} \cdot 7^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_4^2 : C_2):C_2$
Conductor:$4862025= 3^{4} \cdot 5^{2} \cdot 7^{4} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 13 x^{6} - 25 x^{5} + 40 x^{4} - 43 x^{3} + 10 x^{2} + 8 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_4^2 : C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 571 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 161 + 312\cdot 571 + 483\cdot 571^{2} + 540\cdot 571^{3} + 251\cdot 571^{4} + 556\cdot 571^{5} + 415\cdot 571^{6} + 368\cdot 571^{7} + 268\cdot 571^{8} +O\left(571^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 190 + 458\cdot 571 + 233\cdot 571^{2} + 484\cdot 571^{3} + 556\cdot 571^{4} + 323\cdot 571^{5} + 469\cdot 571^{6} + 55\cdot 571^{7} + 185\cdot 571^{8} +O\left(571^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 207 + 297\cdot 571 + 543\cdot 571^{2} + 267\cdot 571^{3} + 49\cdot 571^{4} + 170\cdot 571^{5} + 409\cdot 571^{6} + 69\cdot 571^{7} + 146\cdot 571^{8} +O\left(571^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 235 + 351\cdot 571 + 396\cdot 571^{2} + 324\cdot 571^{3} + 449\cdot 571^{4} + 58\cdot 571^{5} + 82\cdot 571^{6} + 219\cdot 571^{7} + 286\cdot 571^{8} +O\left(571^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 337 + 219\cdot 571 + 174\cdot 571^{2} + 246\cdot 571^{3} + 121\cdot 571^{4} + 512\cdot 571^{5} + 488\cdot 571^{6} + 351\cdot 571^{7} + 284\cdot 571^{8} +O\left(571^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 365 + 273\cdot 571 + 27\cdot 571^{2} + 303\cdot 571^{3} + 521\cdot 571^{4} + 400\cdot 571^{5} + 161\cdot 571^{6} + 501\cdot 571^{7} + 424\cdot 571^{8} +O\left(571^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 382 + 112\cdot 571 + 337\cdot 571^{2} + 86\cdot 571^{3} + 14\cdot 571^{4} + 247\cdot 571^{5} + 101\cdot 571^{6} + 515\cdot 571^{7} + 385\cdot 571^{8} +O\left(571^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 411 + 258\cdot 571 + 87\cdot 571^{2} + 30\cdot 571^{3} + 319\cdot 571^{4} + 14\cdot 571^{5} + 155\cdot 571^{6} + 202\cdot 571^{7} + 302\cdot 571^{8} +O\left(571^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(3,6)(4,8)$
$(1,5)(2,3)(4,8)(6,7)$
$(2,7)(4,5)$
$(3,6)(4,5)$
$(1,8)(3,6)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,8)(4,5)$$0$
$4$$2$$(1,8)(3,6)$$0$
$4$$2$$(1,5)(2,3)(4,8)(6,7)$$0$
$4$$2$$(1,7)(2,8)(3,4)(5,6)$$0$
$4$$2$$(1,6)(2,4)(3,8)(5,7)$$0$
$8$$2$$(1,5)(3,6)(4,8)$$0$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$
$2$$4$$(1,5,8,4)(2,6,7,3)$$0$
$4$$4$$(1,6,8,3)(2,5,7,4)$$0$
$4$$4$$(1,4,8,5)(2,7)(3,6)$$2$
$4$$4$$(1,6,8,3)(2,4,7,5)$$0$
$4$$4$$(2,6,7,3)$$-2$
$8$$8$$(1,7,4,3,8,2,5,6)$$0$
$8$$8$$(1,7,5,3,8,2,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.