Properties

Label 4.3e4_5e2_7e2.8t26.2
Dimension 4
Group $(C_4^2 : C_2):C_2$
Conductor $ 3^{4} \cdot 5^{2} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_4^2 : C_2):C_2$
Conductor:$99225= 3^{4} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 6 x^{5} - 9 x^{3} + 6 x^{2} - 3 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_4^2 : C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 571 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 145 + 299\cdot 571 + 418\cdot 571^{2} + 19\cdot 571^{3} + 76\cdot 571^{4} + 507\cdot 571^{5} + 322\cdot 571^{6} +O\left(571^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 191 + 32\cdot 571 + 319\cdot 571^{2} + 262\cdot 571^{3} + 179\cdot 571^{4} + 104\cdot 571^{5} + 296\cdot 571^{6} +O\left(571^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 226 + 186\cdot 571 + 154\cdot 571^{2} + 28\cdot 571^{3} + 217\cdot 571^{4} + 562\cdot 571^{5} + 433\cdot 571^{6} +O\left(571^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 242 + 371\cdot 571 + 503\cdot 571^{2} + 196\cdot 571^{3} + 119\cdot 571^{4} + 478\cdot 571^{5} + 317\cdot 571^{6} +O\left(571^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 245 + 225\cdot 571 + 49\cdot 571^{2} + 105\cdot 571^{3} + 425\cdot 571^{4} + 555\cdot 571^{5} + 426\cdot 571^{6} +O\left(571^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 372 + 306\cdot 571 + 399\cdot 571^{2} + 384\cdot 571^{3} + 382\cdot 571^{4} + 356\cdot 571^{5} + 552\cdot 571^{6} +O\left(571^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 382 + 321\cdot 571 + 170\cdot 571^{2} + 67\cdot 571^{3} + 157\cdot 571^{4} + 324\cdot 571^{5} + 209\cdot 571^{6} +O\left(571^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 484 + 540\cdot 571 + 268\cdot 571^{2} + 77\cdot 571^{3} + 156\cdot 571^{4} + 537\cdot 571^{5} + 294\cdot 571^{6} +O\left(571^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,6)(3,5)(4,7)$
$(1,7,8,4)(2,6,5,3)$
$(1,8)(2,5)$
$(3,6)(4,7)$
$(1,8)(4,7)$
$(1,2)(3,4)(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,5)(3,6)(4,7)$ $-4$
$2$ $2$ $(2,5)(3,6)$ $0$
$4$ $2$ $(1,8)(2,5)$ $0$
$4$ $2$ $(1,2)(3,4)(5,8)(6,7)$ $0$
$4$ $2$ $(1,5)(2,8)(3,4)(6,7)$ $0$
$4$ $2$ $(1,4)(2,3)(5,6)(7,8)$ $0$
$8$ $2$ $(2,6)(3,5)(4,7)$ $0$
$2$ $4$ $(1,4,8,7)(2,3,5,6)$ $0$
$2$ $4$ $(1,7,8,4)(2,3,5,6)$ $0$
$4$ $4$ $(1,3,8,6)(2,4,5,7)$ $0$
$4$ $4$ $(2,6,5,3)$ $2$
$4$ $4$ $(1,2,8,5)(3,4,6,7)$ $0$
$4$ $4$ $(1,8)(2,6,5,3)(4,7)$ $-2$
$8$ $8$ $(1,2,7,3,8,5,4,6)$ $0$
$8$ $8$ $(1,2,7,6,8,5,4,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.