Properties

Label 4.3e4_5e2_7e2.8t15.2
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 3^{4} \cdot 5^{2} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$99225= 3^{4} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + x^{6} - 4 x^{5} + x^{4} - 4 x^{3} + x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 421 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 63 + 193\cdot 421 + 18\cdot 421^{2} + 46\cdot 421^{3} + 182\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 82 + 199\cdot 421 + 122\cdot 421^{2} + 316\cdot 421^{3} + 357\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 259 + 52\cdot 421 + 18\cdot 421^{2} + 13\cdot 421^{3} + 103\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 263 + 258\cdot 421 + 81\cdot 421^{2} + 49\cdot 421^{3} + 96\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 274 + 22\cdot 421 + 300\cdot 421^{2} + 190\cdot 421^{3} + 5\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 344 + 299\cdot 421 + 372\cdot 421^{2} + 198\cdot 421^{3} + 355\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 408 + 369\cdot 421 + 363\cdot 421^{2} + 257\cdot 421^{3} + 156\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 413 + 287\cdot 421 + 406\cdot 421^{2} + 190\cdot 421^{3} + 6\cdot 421^{4} +O\left(421^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,4)(3,5)(6,8)$
$(1,2,5,6)(3,8,7,4)$
$(3,7)(4,8)$
$(1,7,6,4,5,3,2,8)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $-4$
$2$ $2$ $(3,7)(4,8)$ $0$
$4$ $2$ $(2,6)(3,4)(7,8)$ $0$
$4$ $2$ $(1,7)(2,4)(3,5)(6,8)$ $0$
$4$ $2$ $(1,2)(4,8)(5,6)$ $0$
$2$ $4$ $(1,6,5,2)(3,8,7,4)$ $0$
$2$ $4$ $(1,2,5,6)(3,8,7,4)$ $0$
$4$ $4$ $(1,3,5,7)(2,8,6,4)$ $0$
$4$ $8$ $(1,7,6,4,5,3,2,8)$ $0$
$4$ $8$ $(1,3,2,4,5,7,6,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.