Properties

Label 4.3e4_5e2_7e2.8t15.1c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 3^{4} \cdot 5^{2} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$99225= 3^{4} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 4 x^{6} - 5 x^{5} + x^{4} - 5 x^{3} + 4 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 421 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 33 + 75\cdot 421 + 177\cdot 421^{2} + 328\cdot 421^{3} + 370\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 104 + 32\cdot 421 + 269\cdot 421^{2} + 397\cdot 421^{3} + 51\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 114 + 168\cdot 421 + 63\cdot 421^{2} + 401\cdot 421^{3} + 413\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 155 + 390\cdot 421 + 231\cdot 421^{2} + 85\cdot 421^{3} + 214\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 201 + 238\cdot 421 + 390\cdot 421^{2} + 12\cdot 421^{3} + 327\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 336 + 248\cdot 421 + 167\cdot 421^{2} + 220\cdot 421^{3} + 11\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 370 + 64\cdot 421 + 228\cdot 421^{2} + 316\cdot 421^{3} + 407\cdot 421^{4} +O\left(421^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 373 + 44\cdot 421 + 156\cdot 421^{2} + 342\cdot 421^{3} + 307\cdot 421^{4} +O\left(421^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,7,6)(3,4,8,5)$
$(1,4,2,3,7,5,6,8)$
$(1,7)(2,6)$
$(1,7)(2,6)(3,8)(4,5)$
$(1,8)(2,5)(3,7)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,7)(2,6)(3,8)(4,5)$$-4$
$2$$2$$(1,7)(2,6)$$0$
$4$$2$$(1,6)(2,7)(4,5)$$0$
$4$$2$$(1,8)(2,5)(3,7)(4,6)$$0$
$4$$2$$(2,6)(3,4)(5,8)$$0$
$2$$4$$(1,2,7,6)(3,5,8,4)$$0$
$2$$4$$(1,2,7,6)(3,4,8,5)$$0$
$4$$4$$(1,8,7,3)(2,5,6,4)$$0$
$4$$8$$(1,4,2,3,7,5,6,8)$$0$
$4$$8$$(1,4,6,8,7,5,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.