Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 10 a + 7 + \left(7 a + 8\right)\cdot 11 + \left(3 a + 1\right)\cdot 11^{2} + 3\cdot 11^{3} + \left(10 a + 2\right)\cdot 11^{4} + \left(7 a + 10\right)\cdot 11^{5} + \left(9 a + 2\right)\cdot 11^{6} + \left(4 a + 6\right)\cdot 11^{7} + \left(a + 3\right)\cdot 11^{8} + \left(3 a + 6\right)\cdot 11^{9} + \left(2 a + 8\right)\cdot 11^{10} + \left(6 a + 2\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 9 + 4\cdot 11 + 11^{2} + 6\cdot 11^{3} + 5\cdot 11^{4} + 10\cdot 11^{5} + 3\cdot 11^{6} + 8\cdot 11^{7} + 9\cdot 11^{8} + 11^{9} + 6\cdot 11^{10} + 5\cdot 11^{11} +O\left(11^{ 12 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ a + 3 + \left(3 a + 8\right)\cdot 11 + \left(7 a + 8\right)\cdot 11^{2} + 10 a\cdot 11^{3} + 9\cdot 11^{4} + \left(3 a + 9\right)\cdot 11^{5} + a\cdot 11^{6} + \left(6 a + 5\right)\cdot 11^{7} + \left(9 a + 4\right)\cdot 11^{8} + \left(7 a + 6\right)\cdot 11^{9} + \left(8 a + 3\right)\cdot 11^{10} + \left(4 a + 3\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 3 + 6\cdot 11 + 9\cdot 11^{2} + 4\cdot 11^{3} + 5\cdot 11^{4} + 7\cdot 11^{6} + 2\cdot 11^{7} + 11^{8} + 9\cdot 11^{9} + 4\cdot 11^{10} + 5\cdot 11^{11} +O\left(11^{ 12 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 3 a + \left(2 a + 8\right)\cdot 11 + \left(5 a + 1\right)\cdot 11^{2} + \left(7 a + 4\right)\cdot 11^{3} + a\cdot 11^{4} + \left(2 a + 2\right)\cdot 11^{5} + \left(2 a + 2\right)\cdot 11^{6} + \left(2 a + 2\right)\cdot 11^{7} + \left(4 a + 9\right)\cdot 11^{8} + \left(7 a + 3\right)\cdot 11^{9} + \left(6 a + 1\right)\cdot 11^{10} + 2\cdot 11^{11} +O\left(11^{ 12 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ a + 5 + \left(3 a + 2\right)\cdot 11 + \left(7 a + 9\right)\cdot 11^{2} + \left(10 a + 7\right)\cdot 11^{3} + 8\cdot 11^{4} + 3 a\cdot 11^{5} + \left(a + 8\right)\cdot 11^{6} + \left(6 a + 4\right)\cdot 11^{7} + \left(9 a + 7\right)\cdot 11^{8} + \left(7 a + 4\right)\cdot 11^{9} + \left(8 a + 2\right)\cdot 11^{10} + \left(4 a + 8\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 8 a + 1 + \left(8 a + 3\right)\cdot 11 + \left(5 a + 9\right)\cdot 11^{2} + \left(3 a + 6\right)\cdot 11^{3} + \left(9 a + 10\right)\cdot 11^{4} + \left(8 a + 8\right)\cdot 11^{5} + \left(8 a + 8\right)\cdot 11^{6} + \left(8 a + 8\right)\cdot 11^{7} + \left(6 a + 1\right)\cdot 11^{8} + \left(3 a + 7\right)\cdot 11^{9} + \left(4 a + 9\right)\cdot 11^{10} + \left(10 a + 8\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 10 a + 9 + \left(7 a + 2\right)\cdot 11 + \left(3 a + 2\right)\cdot 11^{2} + 10\cdot 11^{3} + \left(10 a + 1\right)\cdot 11^{4} + \left(7 a + 1\right)\cdot 11^{5} + \left(9 a + 10\right)\cdot 11^{6} + \left(4 a + 5\right)\cdot 11^{7} + \left(a + 6\right)\cdot 11^{8} + \left(3 a + 4\right)\cdot 11^{9} + \left(2 a + 7\right)\cdot 11^{10} + \left(6 a + 7\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,6)(2,4)(3,8)(5,7)$ |
| $(1,5,6,7)(2,8,4,3)$ |
| $(1,6)(2,8)(3,4)$ |
| $(1,4,6,2)(3,5,8,7)$ |
| $(1,2,3)(4,8,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,6)(2,4)(3,8)(5,7)$ |
$-4$ |
| $12$ |
$2$ |
$(1,6)(2,8)(3,4)$ |
$0$ |
| $8$ |
$3$ |
$(1,5,4)(2,6,7)$ |
$1$ |
| $6$ |
$4$ |
$(1,5,6,7)(2,8,4,3)$ |
$0$ |
| $8$ |
$6$ |
$(1,4,3,6,2,8)(5,7)$ |
$-1$ |
| $6$ |
$8$ |
$(1,2,7,3,6,4,5,8)$ |
$0$ |
| $6$ |
$8$ |
$(1,4,7,8,6,2,5,3)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.