Properties

Label 4.3e4_43e2.8t23.1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 3^{4} \cdot 43^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$149769= 3^{4} \cdot 43^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} - 3 x^{6} + 23 x^{5} + x^{4} - 45 x^{3} + 4 x^{2} + 23 x - 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 9 + \left(14 a + 3\right)\cdot 17 + \left(9 a + 12\right)\cdot 17^{2} + \left(7 a + 1\right)\cdot 17^{3} + \left(14 a + 5\right)\cdot 17^{4} + \left(6 a + 4\right)\cdot 17^{5} + 9\cdot 17^{6} + \left(5 a + 15\right)\cdot 17^{7} + \left(10 a + 6\right)\cdot 17^{8} + \left(13 a + 14\right)\cdot 17^{9} + \left(11 a + 11\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 3 + \left(16 a + 6\right)\cdot 17 + \left(8 a + 12\right)\cdot 17^{2} + \left(16 a + 4\right)\cdot 17^{3} + \left(16 a + 8\right)\cdot 17^{4} + \left(10 a + 11\right)\cdot 17^{5} + \left(16 a + 5\right)\cdot 17^{6} + \left(13 a + 1\right)\cdot 17^{7} + \left(9 a + 2\right)\cdot 17^{8} + \left(5 a + 2\right)\cdot 17^{9} + \left(8 a + 7\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 10 + 12\cdot 17 + 7\cdot 17^{2} + 10\cdot 17^{3} + 8\cdot 17^{5} + 9\cdot 17^{6} + 5\cdot 17^{9} + 10\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 9 + \left(2 a + 13\right)\cdot 17 + \left(7 a + 4\right)\cdot 17^{2} + \left(9 a + 15\right)\cdot 17^{3} + \left(2 a + 11\right)\cdot 17^{4} + \left(10 a + 12\right)\cdot 17^{5} + \left(16 a + 7\right)\cdot 17^{6} + \left(11 a + 1\right)\cdot 17^{7} + \left(6 a + 10\right)\cdot 17^{8} + \left(3 a + 2\right)\cdot 17^{9} + \left(5 a + 5\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 8 + 4\cdot 17 + 9\cdot 17^{2} + 6\cdot 17^{3} + 16\cdot 17^{4} + 8\cdot 17^{5} + 7\cdot 17^{6} + 16\cdot 17^{7} + 16\cdot 17^{8} + 11\cdot 17^{9} + 6\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 7 + \left(2 a + 3\right)\cdot 17 + \left(7 a + 7\right)\cdot 17^{2} + \left(9 a + 16\right)\cdot 17^{3} + \left(2 a + 11\right)\cdot 17^{4} + \left(10 a + 13\right)\cdot 17^{5} + \left(16 a + 2\right)\cdot 17^{6} + \left(11 a + 3\right)\cdot 17^{7} + \left(6 a + 12\right)\cdot 17^{8} + 3 a\cdot 17^{9} + \left(5 a + 10\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 5 a + 15 + 10\cdot 17 + \left(8 a + 4\right)\cdot 17^{2} + 12\cdot 17^{3} + 8\cdot 17^{4} + \left(6 a + 5\right)\cdot 17^{5} + 11\cdot 17^{6} + \left(3 a + 15\right)\cdot 17^{7} + \left(7 a + 14\right)\cdot 17^{8} + \left(11 a + 14\right)\cdot 17^{9} + \left(8 a + 9\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 15 a + 11 + \left(14 a + 13\right)\cdot 17 + \left(9 a + 9\right)\cdot 17^{2} + 7 a\cdot 17^{3} + \left(14 a + 5\right)\cdot 17^{4} + \left(6 a + 3\right)\cdot 17^{5} + 14\cdot 17^{6} + \left(5 a + 13\right)\cdot 17^{7} + \left(10 a + 4\right)\cdot 17^{8} + \left(13 a + 16\right)\cdot 17^{9} + \left(11 a + 6\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,6)(7,8)$
$(1,8,2)(4,6,7)$
$(1,8,4,6)(2,3,7,5)$
$(1,4)(2,7)(3,5)(6,8)$
$(1,5,4,3)(2,8,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,4)(2,7)(3,5)(6,8)$ $-4$
$12$ $2$ $(1,4)(2,6)(7,8)$ $0$
$8$ $3$ $(1,8,2)(4,6,7)$ $1$
$6$ $4$ $(1,8,4,6)(2,3,7,5)$ $0$
$8$ $6$ $(1,4)(2,8,3,7,6,5)$ $-1$
$6$ $8$ $(1,7,5,6,4,2,3,8)$ $0$
$6$ $8$ $(1,2,5,8,4,7,3,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.