Properties

Label 4.3e4_41e2.8t23.2
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 3^{4} \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$136161= 3^{4} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 7 x^{6} - 6 x^{5} - 3 x^{4} + 9 x^{3} - x^{2} - 5 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 18 a + 9 + \left(21 a + 10\right)\cdot 23 + \left(10 a + 22\right)\cdot 23^{2} + \left(4 a + 20\right)\cdot 23^{3} + \left(12 a + 5\right)\cdot 23^{4} + \left(20 a + 18\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 13 + \left(11 a + 14\right)\cdot 23 + \left(9 a + 4\right)\cdot 23^{2} + \left(15 a + 12\right)\cdot 23^{3} + \left(22 a + 3\right)\cdot 23^{4} + \left(6 a + 18\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 16 + 6\cdot 23 + 11\cdot 23^{3} + 12\cdot 23^{4} + 3\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 11 + 22\cdot 23 + 8\cdot 23^{2} + 5\cdot 23^{4} + 10\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 18 + 11 a\cdot 23 + \left(13 a + 12\right)\cdot 23^{2} + \left(7 a + 10\right)\cdot 23^{3} + 10\cdot 23^{4} + \left(16 a + 9\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 2 + \left(20 a + 21\right)\cdot 23 + \left(2 a + 17\right)\cdot 23^{2} + \left(18 a + 3\right)\cdot 23^{3} + \left(a + 10\right)\cdot 23^{4} + \left(a + 15\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 10 a + 5 + \left(2 a + 3\right)\cdot 23 + \left(20 a + 3\right)\cdot 23^{2} + \left(4 a + 14\right)\cdot 23^{3} + \left(21 a + 18\right)\cdot 23^{4} + \left(21 a + 15\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 5 a + 22 + \left(a + 12\right)\cdot 23 + \left(12 a + 22\right)\cdot 23^{2} + \left(18 a + 18\right)\cdot 23^{3} + \left(10 a + 2\right)\cdot 23^{4} + \left(2 a + 1\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,2)(5,7,8)$
$(1,3,7,4)(2,8,5,6)$
$(1,5,7,2)(3,8,4,6)$
$(1,7)(2,5)(3,4)(6,8)$
$(1,8)(2,5)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,7)(2,5)(3,4)(6,8)$ $-4$
$12$ $2$ $(1,8)(2,5)(6,7)$ $0$
$8$ $3$ $(2,3,8)(4,6,5)$ $1$
$6$ $4$ $(1,5,7,2)(3,8,4,6)$ $0$
$8$ $6$ $(1,7)(2,6,3,5,8,4)$ $-1$
$6$ $8$ $(1,4,6,2,7,3,8,5)$ $0$
$6$ $8$ $(1,3,6,5,7,4,8,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.