Properties

Label 4.3e4_337e2.8t23.4
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 3^{4} \cdot 337^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$9199089= 3^{4} \cdot 337^{2} $
Artin number field: Splitting field of $f= x^{8} + 6 x^{6} - 12 x^{5} + 3 x^{4} - 39 x^{3} + 54 x^{2} - 81 x + 69 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 14 + \left(17 a + 18\right)\cdot 19 + \left(6 a + 3\right)\cdot 19^{2} + \left(11 a + 2\right)\cdot 19^{3} + \left(6 a + 11\right)\cdot 19^{4} + \left(8 a + 17\right)\cdot 19^{5} + 12\cdot 19^{6} + \left(2 a + 13\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 17 + \left(8 a + 17\right)\cdot 19 + \left(12 a + 18\right)\cdot 19^{2} + \left(2 a + 7\right)\cdot 19^{3} + \left(6 a + 5\right)\cdot 19^{4} + \left(11 a + 6\right)\cdot 19^{5} + \left(11 a + 17\right)\cdot 19^{6} + \left(13 a + 3\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 13 + 17\cdot 19 + 18\cdot 19^{2} + 8\cdot 19^{3} + 10\cdot 19^{4} + 6\cdot 19^{5} + 16\cdot 19^{6} + 4\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 3 + \left(a + 9\right)\cdot 19 + \left(12 a + 12\right)\cdot 19^{2} + \left(7 a + 6\right)\cdot 19^{3} + \left(12 a + 6\right)\cdot 19^{4} + 10 a\cdot 19^{5} + \left(18 a + 5\right)\cdot 19^{6} + \left(16 a + 15\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 18 + \left(3 a + 13\right)\cdot 19 + \left(6 a + 13\right)\cdot 19^{2} + \left(17 a + 3\right)\cdot 19^{3} + \left(13 a + 7\right)\cdot 19^{4} + 15 a\cdot 19^{5} + \left(15 a + 18\right)\cdot 19^{6} + \left(11 a + 7\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 13 + \left(10 a + 11\right)\cdot 19 + \left(6 a + 3\right)\cdot 19^{2} + \left(16 a + 17\right)\cdot 19^{3} + \left(12 a + 8\right)\cdot 19^{4} + \left(7 a + 11\right)\cdot 19^{5} + \left(7 a + 17\right)\cdot 19^{6} + \left(5 a + 5\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 11 a + 7 + \left(15 a + 9\right)\cdot 19 + \left(12 a + 16\right)\cdot 19^{2} + \left(a + 14\right)\cdot 19^{3} + \left(5 a + 3\right)\cdot 19^{4} + \left(3 a + 2\right)\cdot 19^{5} + \left(3 a + 18\right)\cdot 19^{6} + \left(7 a + 3\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 10 + 15\cdot 19 + 6\cdot 19^{2} + 14\cdot 19^{3} + 3\cdot 19^{4} + 12\cdot 19^{5} + 8\cdot 19^{6} + 19^{7} +O\left(19^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,4,2)(3,6,8,5)$
$(1,8,4,3)(2,5,7,6)$
$(1,4)(2,7)(3,8)(5,6)$
$(1,8,5)(3,6,4)$
$(1,3)(4,8)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,4)(2,7)(3,8)(5,6)$ $-4$
$12$ $2$ $(1,3)(4,8)(5,6)$ $0$
$8$ $3$ $(1,3,2)(4,8,7)$ $1$
$6$ $4$ $(1,7,4,2)(3,6,8,5)$ $0$
$8$ $6$ $(1,7,3,4,2,8)(5,6)$ $-1$
$6$ $8$ $(1,7,8,6,4,2,3,5)$ $0$
$6$ $8$ $(1,2,8,5,4,7,3,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.