Properties

Label 4.3e4_337e2.8t23.2c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 3^{4} \cdot 337^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$9199089= 3^{4} \cdot 337^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 19 x^{6} - 43 x^{5} + 52 x^{4} - 37 x^{3} + 10 x^{2} + 2 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 17 a + 11 + \left(a + 7\right)\cdot 19 + \left(8 a + 6\right)\cdot 19^{2} + \left(12 a + 7\right)\cdot 19^{3} + 15\cdot 19^{4} + \left(13 a + 12\right)\cdot 19^{5} + \left(16 a + 7\right)\cdot 19^{6} + \left(18 a + 8\right)\cdot 19^{7} + 18\cdot 19^{8} + \left(3 a + 17\right)\cdot 19^{9} + \left(14 a + 3\right)\cdot 19^{10} + \left(6 a + 13\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 12 + \left(a + 14\right)\cdot 19 + \left(7 a + 2\right)\cdot 19^{2} + \left(4 a + 14\right)\cdot 19^{3} + \left(15 a + 16\right)\cdot 19^{4} + \left(15 a + 1\right)\cdot 19^{5} + \left(6 a + 2\right)\cdot 19^{6} + \left(8 a + 11\right)\cdot 19^{7} + \left(14 a + 14\right)\cdot 19^{8} + \left(2 a + 17\right)\cdot 19^{9} + \left(2 a + 8\right)\cdot 19^{10} + 6 a\cdot 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 8 + \left(17 a + 4\right)\cdot 19 + \left(11 a + 16\right)\cdot 19^{2} + \left(14 a + 4\right)\cdot 19^{3} + \left(3 a + 2\right)\cdot 19^{4} + \left(3 a + 17\right)\cdot 19^{5} + \left(12 a + 16\right)\cdot 19^{6} + \left(10 a + 7\right)\cdot 19^{7} + \left(4 a + 4\right)\cdot 19^{8} + \left(16 a + 1\right)\cdot 19^{9} + \left(16 a + 10\right)\cdot 19^{10} + \left(12 a + 18\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 9 + \left(17 a + 11\right)\cdot 19 + \left(10 a + 12\right)\cdot 19^{2} + \left(6 a + 11\right)\cdot 19^{3} + \left(18 a + 3\right)\cdot 19^{4} + \left(5 a + 6\right)\cdot 19^{5} + \left(2 a + 11\right)\cdot 19^{6} + 10\cdot 19^{7} + 18 a\cdot 19^{8} + \left(15 a + 1\right)\cdot 19^{9} + \left(4 a + 15\right)\cdot 19^{10} + \left(12 a + 5\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 15 + 11\cdot 19 + 3\cdot 19^{2} + 7\cdot 19^{4} + 7\cdot 19^{5} + 9\cdot 19^{6} + 15\cdot 19^{7} + 17\cdot 19^{8} + 7\cdot 19^{9} + 13\cdot 19^{10} + 15\cdot 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 13 + \left(a + 16\right)\cdot 19 + \left(7 a + 10\right)\cdot 19^{2} + \left(4 a + 7\right)\cdot 19^{3} + \left(15 a + 10\right)\cdot 19^{4} + \left(15 a + 16\right)\cdot 19^{5} + \left(6 a + 6\right)\cdot 19^{6} + \left(8 a + 6\right)\cdot 19^{7} + \left(14 a + 17\right)\cdot 19^{8} + \left(2 a + 12\right)\cdot 19^{9} + \left(2 a + 10\right)\cdot 19^{10} + \left(6 a + 14\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 5 a + 7 + \left(17 a + 2\right)\cdot 19 + \left(11 a + 8\right)\cdot 19^{2} + \left(14 a + 11\right)\cdot 19^{3} + \left(3 a + 8\right)\cdot 19^{4} + \left(3 a + 2\right)\cdot 19^{5} + \left(12 a + 12\right)\cdot 19^{6} + \left(10 a + 12\right)\cdot 19^{7} + \left(4 a + 1\right)\cdot 19^{8} + \left(16 a + 6\right)\cdot 19^{9} + \left(16 a + 8\right)\cdot 19^{10} + \left(12 a + 4\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 5 + 7\cdot 19 + 15\cdot 19^{2} + 18\cdot 19^{3} + 11\cdot 19^{4} + 11\cdot 19^{5} + 9\cdot 19^{6} + 3\cdot 19^{7} + 19^{8} + 11\cdot 19^{9} + 5\cdot 19^{10} + 3\cdot 19^{11} +O\left(19^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,4,8)(2,6,3,7)$
$(1,2,4,3)(5,7,8,6)$
$(1,5,7)(4,8,6)$
$(1,4)(2,3)(5,8)(6,7)$
$(1,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,4)(2,3)(5,8)(6,7)$$-4$
$12$$2$$(1,4)(5,6)(7,8)$$0$
$8$$3$$(2,8,7)(3,5,6)$$1$
$6$$4$$(1,5,4,8)(2,6,3,7)$$0$
$8$$6$$(1,4)(2,6,8,3,7,5)$$-1$
$6$$8$$(1,6,3,8,4,7,2,5)$$0$
$6$$8$$(1,7,3,5,4,6,2,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.