Properties

Label 4.3e4_29e4.8t40.1c1
Dimension 4
Group $Q_8:S_4$
Conductor $ 3^{4} \cdot 29^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Q_8:S_4$
Conductor:$57289761= 3^{4} \cdot 29^{4} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 3 x^{6} - 2 x^{5} + x^{4} + 3 x^{3} - x^{2} - x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Q_8:S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 19.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 54 + 79 + 30\cdot 79^{2} + 48\cdot 79^{3} + 51\cdot 79^{4} + 73\cdot 79^{5} + 55\cdot 79^{6} + 50\cdot 79^{7} + 38\cdot 79^{8} + 25\cdot 79^{9} + 13\cdot 79^{10} + 50\cdot 79^{11} + 35\cdot 79^{12} + 3\cdot 79^{13} + 51\cdot 79^{14} + 50\cdot 79^{15} + 30\cdot 79^{16} + 36\cdot 79^{17} + 73\cdot 79^{18} +O\left(79^{ 19 }\right)$
$r_{ 2 }$ $=$ $ 58 + 72\cdot 79 + 14\cdot 79^{2} + 9\cdot 79^{4} + 30\cdot 79^{5} + 69\cdot 79^{6} + 69\cdot 79^{7} + 70\cdot 79^{8} + 53\cdot 79^{9} + 70\cdot 79^{10} + 58\cdot 79^{11} + 65\cdot 79^{12} + 7\cdot 79^{13} + 30\cdot 79^{14} + 32\cdot 79^{15} + 65\cdot 79^{16} + 51\cdot 79^{17} + 47\cdot 79^{18} +O\left(79^{ 19 }\right)$
$r_{ 3 }$ $=$ $ 47 a + 25 + \left(22 a + 38\right)\cdot 79 + \left(63 a + 7\right)\cdot 79^{2} + \left(36 a + 22\right)\cdot 79^{3} + \left(50 a + 76\right)\cdot 79^{4} + \left(74 a + 8\right)\cdot 79^{5} + \left(37 a + 73\right)\cdot 79^{6} + \left(7 a + 11\right)\cdot 79^{7} + \left(40 a + 4\right)\cdot 79^{8} + \left(32 a + 16\right)\cdot 79^{9} + \left(12 a + 17\right)\cdot 79^{10} + \left(53 a + 10\right)\cdot 79^{11} + \left(28 a + 27\right)\cdot 79^{12} + \left(20 a + 35\right)\cdot 79^{13} + \left(37 a + 11\right)\cdot 79^{14} + \left(14 a + 11\right)\cdot 79^{15} + \left(17 a + 67\right)\cdot 79^{16} + \left(37 a + 74\right)\cdot 79^{17} + \left(60 a + 8\right)\cdot 79^{18} +O\left(79^{ 19 }\right)$
$r_{ 4 }$ $=$ $ 77 a + 6 + \left(11 a + 19\right)\cdot 79 + \left(35 a + 1\right)\cdot 79^{2} + \left(8 a + 61\right)\cdot 79^{3} + \left(14 a + 40\right)\cdot 79^{4} + \left(15 a + 24\right)\cdot 79^{5} + \left(44 a + 47\right)\cdot 79^{6} + \left(74 a + 53\right)\cdot 79^{7} + \left(57 a + 75\right)\cdot 79^{8} + \left(68 a + 10\right)\cdot 79^{9} + \left(14 a + 38\right)\cdot 79^{10} + \left(9 a + 43\right)\cdot 79^{11} + \left(28 a + 14\right)\cdot 79^{12} + \left(3 a + 12\right)\cdot 79^{13} + \left(4 a + 69\right)\cdot 79^{14} + \left(54 a + 58\right)\cdot 79^{15} + \left(37 a + 53\right)\cdot 79^{16} + \left(56 a + 1\right)\cdot 79^{17} + \left(35 a + 5\right)\cdot 79^{18} +O\left(79^{ 19 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 4 + \left(67 a + 33\right)\cdot 79 + \left(43 a + 24\right)\cdot 79^{2} + \left(70 a + 34\right)\cdot 79^{3} + \left(64 a + 46\right)\cdot 79^{4} + \left(63 a + 25\right)\cdot 79^{5} + \left(34 a + 76\right)\cdot 79^{6} + \left(4 a + 4\right)\cdot 79^{7} + \left(21 a + 59\right)\cdot 79^{8} + \left(10 a + 21\right)\cdot 79^{9} + \left(64 a + 63\right)\cdot 79^{10} + \left(69 a + 37\right)\cdot 79^{11} + \left(50 a + 33\right)\cdot 79^{12} + \left(75 a + 66\right)\cdot 79^{13} + \left(74 a + 69\right)\cdot 79^{14} + \left(24 a + 29\right)\cdot 79^{15} + \left(41 a + 37\right)\cdot 79^{16} + \left(22 a + 20\right)\cdot 79^{17} + \left(43 a + 63\right)\cdot 79^{18} +O\left(79^{ 19 }\right)$
$r_{ 6 }$ $=$ $ 64 a + 57 + \left(37 a + 2\right)\cdot 79 + \left(75 a + 76\right)\cdot 79^{2} + \left(35 a + 17\right)\cdot 79^{3} + \left(62 a + 27\right)\cdot 79^{4} + \left(65 a + 58\right)\cdot 79^{5} + \left(29 a + 75\right)\cdot 79^{6} + \left(41 a + 65\right)\cdot 79^{7} + \left(68 a + 1\right)\cdot 79^{8} + \left(17 a + 36\right)\cdot 79^{9} + \left(50 a + 2\right)\cdot 79^{10} + \left(42 a + 36\right)\cdot 79^{11} + \left(14 a + 3\right)\cdot 79^{12} + \left(50 a + 64\right)\cdot 79^{13} + \left(70 a + 17\right)\cdot 79^{14} + \left(13 a + 61\right)\cdot 79^{15} + \left(78 a + 42\right)\cdot 79^{16} + \left(39 a + 76\right)\cdot 79^{17} + \left(58 a + 72\right)\cdot 79^{18} +O\left(79^{ 19 }\right)$
$r_{ 7 }$ $=$ $ 32 a + 72 + \left(56 a + 13\right)\cdot 79 + \left(15 a + 48\right)\cdot 79^{2} + \left(42 a + 74\right)\cdot 79^{3} + \left(28 a + 10\right)\cdot 79^{4} + \left(4 a + 33\right)\cdot 79^{5} + \left(41 a + 36\right)\cdot 79^{6} + \left(71 a + 60\right)\cdot 79^{7} + \left(38 a + 36\right)\cdot 79^{8} + \left(46 a + 8\right)\cdot 79^{9} + \left(66 a + 76\right)\cdot 79^{10} + \left(25 a + 50\right)\cdot 79^{11} + \left(50 a + 2\right)\cdot 79^{12} + \left(58 a + 27\right)\cdot 79^{13} + \left(41 a + 28\right)\cdot 79^{14} + \left(64 a + 67\right)\cdot 79^{15} + \left(61 a + 69\right)\cdot 79^{16} + \left(41 a + 15\right)\cdot 79^{17} + \left(18 a + 32\right)\cdot 79^{18} +O\left(79^{ 19 }\right)$
$r_{ 8 }$ $=$ $ 15 a + 42 + \left(41 a + 55\right)\cdot 79 + \left(3 a + 34\right)\cdot 79^{2} + \left(43 a + 57\right)\cdot 79^{3} + \left(16 a + 53\right)\cdot 79^{4} + \left(13 a + 61\right)\cdot 79^{5} + \left(49 a + 39\right)\cdot 79^{6} + \left(37 a + 77\right)\cdot 79^{7} + \left(10 a + 28\right)\cdot 79^{8} + \left(61 a + 64\right)\cdot 79^{9} + \left(28 a + 34\right)\cdot 79^{10} + \left(36 a + 28\right)\cdot 79^{11} + \left(64 a + 54\right)\cdot 79^{12} + \left(28 a + 20\right)\cdot 79^{13} + \left(8 a + 38\right)\cdot 79^{14} + \left(65 a + 4\right)\cdot 79^{15} + 28\cdot 79^{16} + \left(39 a + 38\right)\cdot 79^{17} + \left(20 a + 12\right)\cdot 79^{18} +O\left(79^{ 19 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,5,7)(4,8,6)$
$(3,6)(7,8)$
$(1,7,2,8)$
$(1,6,8)(2,3,7)$
$(4,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,6)(4,5)(7,8)$$-4$
$6$$2$$(1,2)(7,8)$$0$
$12$$2$$(1,8)(2,7)(3,5)(4,6)$$0$
$24$$2$$(1,2)(3,7)(6,8)$$0$
$32$$3$$(1,6,8)(2,3,7)$$1$
$6$$4$$(1,3,2,6)(4,8,5,7)$$0$
$6$$4$$(1,3,2,6)(4,7,5,8)$$0$
$12$$4$$(1,7,2,8)$$-2$
$12$$4$$(1,2)(3,7,6,8)(4,5)$$2$
$32$$6$$(1,6,8,2,3,7)(4,5)$$-1$
$24$$8$$(1,5,3,7,2,4,6,8)$$0$
$24$$8$$(1,7,3,5,2,8,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.