Properties

Label 4.3e4_283e2.8t23.2c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 3^{4} \cdot 283^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$6487209= 3^{4} \cdot 283^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 7 x^{6} + 7 x^{5} - 51 x^{4} + 50 x^{3} + 61 x^{2} - 107 x - 83 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 7\cdot 17 + 7\cdot 17^{2} + 17^{3} + 3\cdot 17^{4} + 5\cdot 17^{5} + 13\cdot 17^{6} + 16\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 1 + 6\cdot 17 + \left(a + 12\right)\cdot 17^{2} + 16 a\cdot 17^{3} + \left(10 a + 5\right)\cdot 17^{4} + \left(16 a + 11\right)\cdot 17^{5} + \left(6 a + 16\right)\cdot 17^{6} + \left(6 a + 16\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 9 + \left(5 a + 8\right)\cdot 17 + \left(5 a + 1\right)\cdot 17^{2} + \left(9 a + 6\right)\cdot 17^{3} + \left(a + 9\right)\cdot 17^{4} + \left(13 a + 6\right)\cdot 17^{5} + \left(8 a + 8\right)\cdot 17^{6} + \left(5 a + 10\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 2 + \left(10 a + 6\right)\cdot 17 + \left(15 a + 12\right)\cdot 17^{2} + \left(16 a + 10\right)\cdot 17^{3} + \left(6 a + 1\right)\cdot 17^{4} + \left(6 a + 10\right)\cdot 17^{5} + \left(12 a + 15\right)\cdot 17^{6} + \left(8 a + 12\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 12 a + 7 + \left(6 a + 11\right)\cdot 17 + a\cdot 17^{2} + 12\cdot 17^{3} + \left(10 a + 8\right)\cdot 17^{4} + \left(10 a + 9\right)\cdot 17^{5} + \left(4 a + 4\right)\cdot 17^{6} + \left(8 a + 9\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 15 + \left(16 a + 9\right)\cdot 17 + \left(15 a + 12\right)\cdot 17^{2} + 15\cdot 17^{3} + \left(6 a + 16\right)\cdot 17^{4} + 16\cdot 17^{5} + \left(10 a + 6\right)\cdot 17^{6} + \left(10 a + 16\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 7 }$ $=$ $ a + 8 + \left(11 a + 15\right)\cdot 17 + 11 a\cdot 17^{2} + \left(7 a + 10\right)\cdot 17^{3} + \left(15 a + 1\right)\cdot 17^{4} + \left(3 a + 1\right)\cdot 17^{5} + \left(8 a + 4\right)\cdot 17^{6} + \left(11 a + 7\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 12 + 3\cdot 17 + 3\cdot 17^{2} + 11\cdot 17^{3} + 4\cdot 17^{4} + 7\cdot 17^{5} + 15\cdot 17^{6} + 11\cdot 17^{7} +O\left(17^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,8,3)(2,7,6,4)$
$(2,4)(3,5)(6,7)$
$(2,7,5)(3,6,4)$
$(1,7,8,4)(2,3,6,5)$
$(1,8)(2,6)(3,5)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,6)(3,5)(4,7)$$-4$
$12$$2$$(2,4)(3,5)(6,7)$$0$
$8$$3$$(1,5,6)(2,8,3)$$1$
$6$$4$$(1,5,8,3)(2,7,6,4)$$0$
$8$$6$$(1,2,5,8,6,3)(4,7)$$-1$
$6$$8$$(1,7,5,6,8,4,3,2)$$0$
$6$$8$$(1,4,5,2,8,7,3,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.