Properties

Label 4.3e4_241e2.8t23.1c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 3^{4} \cdot 241^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$4704561= 3^{4} \cdot 241^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 3 x^{6} + 17 x^{5} + 3 x^{4} - 51 x^{3} + 24 x^{2} + 36 x - 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 4 + 5\cdot 19 + \left(13 a + 15\right)\cdot 19^{2} + \left(12 a + 18\right)\cdot 19^{3} + \left(3 a + 6\right)\cdot 19^{4} + \left(14 a + 10\right)\cdot 19^{5} + \left(3 a + 4\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 14 + \left(14 a + 7\right)\cdot 19 + \left(6 a + 4\right)\cdot 19^{2} + \left(10 a + 12\right)\cdot 19^{3} + \left(4 a + 9\right)\cdot 19^{4} + \left(6 a + 2\right)\cdot 19^{5} + \left(5 a + 1\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 11 + 11\cdot 19 + 5\cdot 19^{2} + 17\cdot 19^{3} + 9\cdot 19^{4} + 12\cdot 19^{5} + 10\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 12 + \left(18 a + 16\right)\cdot 19 + \left(5 a + 8\right)\cdot 19^{2} + \left(6 a + 18\right)\cdot 19^{3} + \left(15 a + 16\right)\cdot 19^{4} + \left(4 a + 1\right)\cdot 19^{5} + \left(15 a + 13\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 15 a + 18 + \left(4 a + 17\right)\cdot 19 + \left(12 a + 15\right)\cdot 19^{2} + \left(8 a + 15\right)\cdot 19^{3} + \left(14 a + 3\right)\cdot 19^{4} + \left(12 a + 4\right)\cdot 19^{5} + 13 a\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 10 + 14\cdot 19 + 9\cdot 19^{2} + 14\cdot 19^{3} + 6\cdot 19^{4} + 7\cdot 19^{5} +O\left(19^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 10 a + \left(15 a + 8\right)\cdot 19 + \left(3 a + 4\right)\cdot 19^{2} + \left(5 a + 17\right)\cdot 19^{3} + \left(7 a + 9\right)\cdot 19^{4} + \left(2 a + 11\right)\cdot 19^{5} + \left(11 a + 18\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 9 a + 10 + \left(3 a + 13\right)\cdot 19 + \left(15 a + 11\right)\cdot 19^{2} + \left(13 a + 18\right)\cdot 19^{3} + \left(11 a + 11\right)\cdot 19^{4} + \left(16 a + 6\right)\cdot 19^{5} + \left(7 a + 8\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,6)(5,7)$
$(1,7,4,5)(2,3,8,6)$
$(1,6,7)(3,5,4)$
$(1,6,4,3)(2,7,8,5)$
$(1,5)(3,6)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,4)(2,8)(3,6)(5,7)$$-4$
$12$$2$$(1,5)(3,6)(4,7)$$0$
$8$$3$$(1,2,3)(4,8,6)$$1$
$6$$4$$(1,7,4,5)(2,3,8,6)$$0$
$8$$6$$(1,6,2,4,3,8)(5,7)$$-1$
$6$$8$$(1,2,7,3,4,8,5,6)$$0$
$6$$8$$(1,8,7,6,4,2,5,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.