Properties

Label 4.3e4_239e2.8t23.3c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 3^{4} \cdot 239^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$4626801= 3^{4} \cdot 239^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 14 x^{6} - 16 x^{5} - 14 x^{4} + 76 x^{3} - 70 x^{2} + 19 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 28 + \left(3 a + 27\right)\cdot 43 + \left(35 a + 26\right)\cdot 43^{2} + \left(7 a + 7\right)\cdot 43^{3} + \left(27 a + 19\right)\cdot 43^{4} + 5 a\cdot 43^{5} + \left(39 a + 33\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 28 + 12\cdot 43 + 35\cdot 43^{2} + 8\cdot 43^{3} + 9\cdot 43^{4} + 41\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 31 + \left(34 a + 36\right)\cdot 43 + \left(19 a + 6\right)\cdot 43^{2} + \left(28 a + 23\right)\cdot 43^{3} + \left(5 a + 6\right)\cdot 43^{4} + \left(34 a + 38\right)\cdot 43^{5} + \left(22 a + 20\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 33 a + 41 + \left(8 a + 17\right)\cdot 43 + \left(23 a + 35\right)\cdot 43^{2} + \left(14 a + 31\right)\cdot 43^{3} + \left(37 a + 26\right)\cdot 43^{4} + \left(8 a + 23\right)\cdot 43^{5} + \left(20 a + 9\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 4 + 31\cdot 43 + 38\cdot 43^{2} + 43^{3} + 31\cdot 43^{4} + 28\cdot 43^{5} + 42\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 7 + \left(13 a + 23\right)\cdot 43 + \left(34 a + 39\right)\cdot 43^{2} + \left(22 a + 21\right)\cdot 43^{3} + \left(26 a + 18\right)\cdot 43^{4} + 41 a\cdot 43^{5} + \left(32 a + 5\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 23 a + 27 + \left(29 a + 16\right)\cdot 43 + \left(8 a + 17\right)\cdot 43^{2} + \left(20 a + 10\right)\cdot 43^{3} + \left(16 a + 22\right)\cdot 43^{4} + \left(a + 15\right)\cdot 43^{5} + \left(10 a + 39\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 18 a + 10 + \left(39 a + 6\right)\cdot 43 + \left(7 a + 15\right)\cdot 43^{2} + \left(35 a + 23\right)\cdot 43^{3} + \left(15 a + 38\right)\cdot 43^{4} + \left(37 a + 21\right)\cdot 43^{5} + \left(3 a + 23\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,5)(6,8)$
$(1,7,6,8)(2,3,5,4)$
$(1,2,6,5)(3,7,4,8)$
$(1,6)(2,5)(3,4)(7,8)$
$(1,8,2)(5,6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,6)(2,5)(3,4)(7,8)$$-4$
$12$$2$$(1,7)(2,5)(6,8)$$0$
$8$$3$$(1,5,4)(2,3,6)$$1$
$6$$4$$(1,7,6,8)(2,3,5,4)$$0$
$8$$6$$(1,7,2,6,8,5)(3,4)$$-1$
$6$$8$$(1,4,8,5,6,3,7,2)$$0$
$6$$8$$(1,3,8,2,6,4,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.