Properties

Label 4.3e4_19e4.5t4.4
Dimension 4
Group $\PSL(2,5)$
Conductor $ 3^{4} \cdot 19^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PSL(2,5)$
Conductor:$10556001= 3^{4} \cdot 19^{4} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 3 x^{4} + x^{3} - 9 x^{2} + 3 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + \left(10 a + 8\right)\cdot 13 + \left(a + 2\right)\cdot 13^{2} + 5 a\cdot 13^{3} + \left(3 a + 1\right)\cdot 13^{4} + \left(9 a + 4\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 2 + \left(2 a + 3\right)\cdot 13 + \left(11 a + 7\right)\cdot 13^{2} + \left(7 a + 3\right)\cdot 13^{3} + \left(9 a + 12\right)\cdot 13^{4} + \left(3 a + 9\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 8 + 13 + 6\cdot 13^{3} + 6\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 3 + 5\cdot 13 + 11\cdot 13^{2} + 9\cdot 13^{3} + 6\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 6 + \left(2 a + 11\right)\cdot 13 + \left(a + 2\right)\cdot 13^{2} + \left(12 a + 4\right)\cdot 13^{3} + \left(a + 4\right)\cdot 13^{4} + \left(6 a + 4\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 10 + \left(10 a + 9\right)\cdot 13 + \left(11 a + 1\right)\cdot 13^{2} + 2\cdot 13^{3} + \left(11 a + 7\right)\cdot 13^{4} + \left(6 a + 8\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(3,6)$
$(1,5,6)(2,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$15$ $2$ $(1,6)(4,5)$ $0$
$20$ $3$ $(1,5,6)(2,4,3)$ $1$
$12$ $5$ $(2,4,6,5,3)$ $-1$
$12$ $5$ $(2,6,3,4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.