Properties

Label 4.3e4_17e2.8t23.1c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 3^{4} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$23409= 3^{4} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 7 x^{6} - 7 x^{5} + 4 x^{4} - x^{3} + 4 x^{2} - 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 8\cdot 11 + 3\cdot 11^{2} + 6\cdot 11^{4} + 3\cdot 11^{5} + 4\cdot 11^{7} + 9\cdot 11^{8} + 5\cdot 11^{9} + 2\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 4 + \left(9 a + 5\right)\cdot 11 + 3\cdot 11^{2} + 7\cdot 11^{3} + \left(6 a + 10\right)\cdot 11^{4} + \left(8 a + 2\right)\cdot 11^{5} + \left(3 a + 9\right)\cdot 11^{6} + \left(4 a + 9\right)\cdot 11^{7} + \left(9 a + 4\right)\cdot 11^{8} + \left(10 a + 5\right)\cdot 11^{9} + \left(4 a + 2\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 5 + \left(4 a + 10\right)\cdot 11 + \left(7 a + 3\right)\cdot 11^{2} + \left(6 a + 1\right)\cdot 11^{3} + \left(2 a + 9\right)\cdot 11^{4} + \left(6 a + 10\right)\cdot 11^{5} + \left(5 a + 2\right)\cdot 11^{6} + \left(a + 5\right)\cdot 11^{7} + \left(10 a + 2\right)\cdot 11^{8} + \left(5 a + 4\right)\cdot 11^{9} + \left(8 a + 2\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 10 + 2\cdot 11 + 7\cdot 11^{2} + 10\cdot 11^{3} + 4\cdot 11^{4} + 7\cdot 11^{5} + 10\cdot 11^{6} + 6\cdot 11^{7} + 11^{8} + 5\cdot 11^{9} + 8\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 2 + \left(9 a + 7\right)\cdot 11 + 2\cdot 11^{2} + 4\cdot 11^{3} + \left(6 a + 9\right)\cdot 11^{4} + \left(8 a + 1\right)\cdot 11^{5} + \left(3 a + 6\right)\cdot 11^{6} + \left(4 a + 9\right)\cdot 11^{7} + \left(9 a + 5\right)\cdot 11^{8} + \left(10 a + 4\right)\cdot 11^{9} + \left(4 a + 10\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 8 + \left(a + 5\right)\cdot 11 + \left(10 a + 7\right)\cdot 11^{2} + \left(10 a + 3\right)\cdot 11^{3} + 4 a\cdot 11^{4} + \left(2 a + 8\right)\cdot 11^{5} + \left(7 a + 1\right)\cdot 11^{6} + \left(6 a + 1\right)\cdot 11^{7} + \left(a + 6\right)\cdot 11^{8} + 5\cdot 11^{9} + \left(6 a + 8\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 4 a + 10 + \left(a + 3\right)\cdot 11 + \left(10 a + 8\right)\cdot 11^{2} + \left(10 a + 6\right)\cdot 11^{3} + \left(4 a + 1\right)\cdot 11^{4} + \left(2 a + 9\right)\cdot 11^{5} + \left(7 a + 4\right)\cdot 11^{6} + \left(6 a + 1\right)\cdot 11^{7} + \left(a + 5\right)\cdot 11^{8} + 6\cdot 11^{9} + 6 a\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 5 a + 7 + 6 a\cdot 11 + \left(3 a + 7\right)\cdot 11^{2} + \left(4 a + 9\right)\cdot 11^{3} + \left(8 a + 1\right)\cdot 11^{4} + 4 a\cdot 11^{5} + \left(5 a + 8\right)\cdot 11^{6} + \left(9 a + 5\right)\cdot 11^{7} + 8\cdot 11^{8} + \left(5 a + 6\right)\cdot 11^{9} + \left(2 a + 8\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,4,2)(3,7,8,5)$
$(1,6,8)(2,3,4)$
$(1,3)(2,6)(4,8)$
$(1,3,4,8)(2,7,6,5)$
$(1,4)(2,6)(3,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,4)(2,6)(3,8)(5,7)$$-4$
$12$$2$$(1,3)(2,6)(4,8)$$0$
$8$$3$$(1,5,3)(4,7,8)$$1$
$6$$4$$(1,6,4,2)(3,7,8,5)$$0$
$8$$6$$(1,8,5,4,3,7)(2,6)$$-1$
$6$$8$$(1,2,3,7,4,6,8,5)$$0$
$6$$8$$(1,6,3,5,4,2,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.