Properties

Label 4.3e4_173e2.8t23.4
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 3^{4} \cdot 173^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$2424249= 3^{4} \cdot 173^{2} $
Artin number field: Splitting field of $f= x^{8} + 3 x^{6} - 6 x^{5} - 15 x^{4} - 15 x^{3} + 24 x^{2} - 18 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 16\cdot 23 + 18\cdot 23^{2} + 2\cdot 23^{3} + 7\cdot 23^{4} + 14\cdot 23^{5} + 7\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 12 + \left(15 a + 6\right)\cdot 23 + \left(5 a + 9\right)\cdot 23^{2} + 16 a\cdot 23^{3} + \left(20 a + 3\right)\cdot 23^{4} + 19\cdot 23^{5} + \left(8 a + 7\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 18 + 7\cdot 23 + 22\cdot 23^{2} + 5\cdot 23^{3} + 13\cdot 23^{4} + 2\cdot 23^{5} + 12\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 21 + \left(5 a + 18\right)\cdot 23 + 3\cdot 23^{2} + \left(21 a + 13\right)\cdot 23^{3} + \left(14 a + 17\right)\cdot 23^{4} + \left(11 a + 2\right)\cdot 23^{5} + \left(5 a + 5\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 13 + 11 a\cdot 23 + \left(2 a + 20\right)\cdot 23^{2} + \left(3 a + 14\right)\cdot 23^{3} + \left(2 a + 20\right)\cdot 23^{4} + \left(20 a + 1\right)\cdot 23^{5} + \left(21 a + 4\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 10 + 17 a\cdot 23 + \left(22 a + 22\right)\cdot 23^{2} + \left(a + 8\right)\cdot 23^{3} + \left(8 a + 3\right)\cdot 23^{4} + \left(11 a + 11\right)\cdot 23^{5} + \left(17 a + 4\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 16 a + 4 + \left(11 a + 16\right)\cdot 23 + \left(20 a + 13\right)\cdot 23^{2} + \left(19 a + 18\right)\cdot 23^{3} + \left(20 a + 21\right)\cdot 23^{4} + \left(2 a + 16\right)\cdot 23^{5} + \left(a + 4\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 11 a + 13 + \left(7 a + 2\right)\cdot 23 + \left(17 a + 5\right)\cdot 23^{2} + \left(6 a + 4\right)\cdot 23^{3} + \left(2 a + 5\right)\cdot 23^{4} + 22 a\cdot 23^{5} + 14 a\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,4)(3,8,6)$
$(1,2,3,5)(4,7,6,8)$
$(1,6)(3,4)(7,8)$
$(1,4,3,6)(2,8,5,7)$
$(1,3)(2,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,3)(2,5)(4,6)(7,8)$ $-4$
$12$ $2$ $(1,6)(3,4)(7,8)$ $0$
$8$ $3$ $(2,6,7)(4,8,5)$ $1$
$6$ $4$ $(1,4,3,6)(2,8,5,7)$ $0$
$8$ $6$ $(1,8,4,3,7,6)(2,5)$ $-1$
$6$ $8$ $(1,8,6,2,3,7,4,5)$ $0$
$6$ $8$ $(1,7,6,5,3,8,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.