Properties

Label 4.3e4_173e2.8t23.3c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 3^{4} \cdot 173^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$2424249= 3^{4} \cdot 173^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 4 x^{6} + 2 x^{5} - 2 x^{4} - 4 x^{3} + 4 x^{2} - x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 17 a + 18 + 7 a\cdot 23 + \left(22 a + 16\right)\cdot 23^{2} + \left(20 a + 1\right)\cdot 23^{3} + \left(15 a + 6\right)\cdot 23^{4} + \left(17 a + 13\right)\cdot 23^{5} + \left(13 a + 6\right)\cdot 23^{6} + \left(14 a + 15\right)\cdot 23^{7} + \left(11 a + 18\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 9 + \left(14 a + 22\right)\cdot 23 + \left(22 a + 5\right)\cdot 23^{2} + 21 a\cdot 23^{3} + \left(13 a + 16\right)\cdot 23^{4} + \left(5 a + 8\right)\cdot 23^{5} + \left(22 a + 17\right)\cdot 23^{6} + \left(12 a + 11\right)\cdot 23^{7} + \left(20 a + 13\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 15 + 8 a\cdot 23 + 17\cdot 23^{2} + \left(a + 22\right)\cdot 23^{3} + \left(9 a + 6\right)\cdot 23^{4} + \left(17 a + 14\right)\cdot 23^{5} + 5\cdot 23^{6} + \left(10 a + 11\right)\cdot 23^{7} + \left(2 a + 9\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 16 a + \left(8 a + 21\right)\cdot 23 + 13\cdot 23^{2} + \left(a + 21\right)\cdot 23^{3} + \left(9 a + 21\right)\cdot 23^{4} + \left(17 a + 5\right)\cdot 23^{5} + 10\cdot 23^{6} + \left(10 a + 15\right)\cdot 23^{7} + \left(2 a + 18\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 11 + 19\cdot 23 + 4\cdot 23^{2} + 7\cdot 23^{3} + 11\cdot 23^{4} + 19\cdot 23^{5} + 21\cdot 23^{6} + 6\cdot 23^{7} + 2\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 1 + \left(14 a + 2\right)\cdot 23 + \left(22 a + 9\right)\cdot 23^{2} + \left(21 a + 1\right)\cdot 23^{3} + \left(13 a + 1\right)\cdot 23^{4} + \left(5 a + 17\right)\cdot 23^{5} + \left(22 a + 12\right)\cdot 23^{6} + \left(12 a + 7\right)\cdot 23^{7} + \left(20 a + 4\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 13 + 3\cdot 23 + 18\cdot 23^{2} + 15\cdot 23^{3} + 11\cdot 23^{4} + 3\cdot 23^{5} + 23^{6} + 16\cdot 23^{7} + 20\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 6 a + 6 + \left(15 a + 22\right)\cdot 23 + 6\cdot 23^{2} + \left(2 a + 21\right)\cdot 23^{3} + \left(7 a + 16\right)\cdot 23^{4} + \left(5 a + 9\right)\cdot 23^{5} + \left(9 a + 16\right)\cdot 23^{6} + \left(8 a + 7\right)\cdot 23^{7} + \left(11 a + 4\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,8,7)(2,6,3,4)$
$(1,8)(2,7)(3,5)$
$(1,3,7)(2,5,8)$
$(1,3,8,2)(4,5,6,7)$
$(1,8)(2,3)(4,6)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,3)(4,6)(5,7)$$-4$
$12$$2$$(1,8)(2,7)(3,5)$$0$
$8$$3$$(1,2,6)(3,4,8)$$1$
$6$$4$$(1,5,8,7)(2,6,3,4)$$0$
$8$$6$$(1,4,2,8,6,3)(5,7)$$-1$
$6$$8$$(1,7,6,3,8,5,4,2)$$0$
$6$$8$$(1,5,6,2,8,7,4,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.