Properties

Label 4.3e4_109e2.8t23.6
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 3^{4} \cdot 109^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$962361= 3^{4} \cdot 109^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 4 x^{6} + 2 x^{5} + 10 x^{4} - 28 x^{3} + 28 x^{2} - 13 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 61 a + 46 + \left(65 a + 32\right)\cdot 67 + \left(48 a + 35\right)\cdot 67^{2} + \left(51 a + 21\right)\cdot 67^{3} + \left(53 a + 52\right)\cdot 67^{4} + \left(61 a + 3\right)\cdot 67^{5} + \left(60 a + 43\right)\cdot 67^{6} + \left(50 a + 62\right)\cdot 67^{7} +O\left(67^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 22 + \left(a + 34\right)\cdot 67 + \left(18 a + 31\right)\cdot 67^{2} + \left(15 a + 45\right)\cdot 67^{3} + \left(13 a + 14\right)\cdot 67^{4} + \left(5 a + 63\right)\cdot 67^{5} + \left(6 a + 23\right)\cdot 67^{6} + \left(16 a + 4\right)\cdot 67^{7} +O\left(67^{ 8 }\right)$
$r_{ 3 }$ $=$ $ a + 1 + 32\cdot 67 + \left(36 a + 10\right)\cdot 67^{2} + \left(52 a + 24\right)\cdot 67^{3} + \left(18 a + 43\right)\cdot 67^{4} + \left(27 a + 10\right)\cdot 67^{5} + \left(a + 47\right)\cdot 67^{6} + \left(5 a + 3\right)\cdot 67^{7} +O\left(67^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 56 + 55\cdot 67 + 8\cdot 67^{2} + 28\cdot 67^{3} + 67^{4} + 21\cdot 67^{5} + 13\cdot 67^{6} + 46\cdot 67^{7} +O\left(67^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 66 a + \left(66 a + 35\right)\cdot 67 + \left(30 a + 56\right)\cdot 67^{2} + \left(14 a + 42\right)\cdot 67^{3} + \left(48 a + 23\right)\cdot 67^{4} + \left(39 a + 56\right)\cdot 67^{5} + \left(65 a + 19\right)\cdot 67^{6} + \left(61 a + 63\right)\cdot 67^{7} +O\left(67^{ 8 }\right)$
$r_{ 6 }$ $=$ $ a + 63 + 35\cdot 67 + \left(36 a + 46\right)\cdot 67^{2} + \left(52 a + 2\right)\cdot 67^{3} + \left(18 a + 1\right)\cdot 67^{4} + \left(27 a + 33\right)\cdot 67^{5} + \left(a + 41\right)\cdot 67^{6} + \left(5 a + 44\right)\cdot 67^{7} +O\left(67^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 12 + 11\cdot 67 + 58\cdot 67^{2} + 38\cdot 67^{3} + 65\cdot 67^{4} + 45\cdot 67^{5} + 53\cdot 67^{6} + 20\cdot 67^{7} +O\left(67^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 66 a + 5 + \left(66 a + 31\right)\cdot 67 + \left(30 a + 20\right)\cdot 67^{2} + \left(14 a + 64\right)\cdot 67^{3} + \left(48 a + 65\right)\cdot 67^{4} + \left(39 a + 33\right)\cdot 67^{5} + \left(65 a + 25\right)\cdot 67^{6} + \left(61 a + 22\right)\cdot 67^{7} +O\left(67^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,6)(2,4,8)$
$(1,8,2,6)(3,7,5,4)$
$(1,2)(3,5)(4,7)(6,8)$
$(1,3,2,5)(4,6,7,8)$
$(1,4)(2,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,5)(4,7)(6,8)$ $-4$
$12$ $2$ $(1,4)(2,7)(6,8)$ $0$
$8$ $3$ $(3,7,8)(4,6,5)$ $1$
$6$ $4$ $(1,8,2,6)(3,7,5,4)$ $0$
$8$ $6$ $(1,2)(3,6,7,5,8,4)$ $-1$
$6$ $8$ $(1,3,7,6,2,5,4,8)$ $0$
$6$ $8$ $(1,5,7,8,2,3,4,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.