Properties

Label 4.3e4_109e2.8t23.4
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 3^{4} \cdot 109^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$962361= 3^{4} \cdot 109^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 6 x^{6} - 12 x^{5} + 6 x^{4} - 18 x^{3} + 18 x^{2} - 3 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 18 + \left(10 a + 8\right)\cdot 29 + \left(8 a + 18\right)\cdot 29^{2} + \left(22 a + 21\right)\cdot 29^{3} + \left(20 a + 3\right)\cdot 29^{4} + \left(2 a + 28\right)\cdot 29^{5} + \left(25 a + 27\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 14 + \left(18 a + 25\right)\cdot 29 + \left(20 a + 20\right)\cdot 29^{2} + \left(6 a + 8\right)\cdot 29^{3} + \left(8 a + 27\right)\cdot 29^{4} + \left(26 a + 20\right)\cdot 29^{5} + \left(3 a + 5\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 20 + \left(11 a + 18\right)\cdot 29 + \left(3 a + 17\right)\cdot 29^{2} + \left(7 a + 12\right)\cdot 29^{3} + \left(20 a + 24\right)\cdot 29^{4} + \left(20 a + 21\right)\cdot 29^{5} + 7\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 21 + 11\cdot 29 + 18\cdot 29^{2} + 19\cdot 29^{3} + 27\cdot 29^{4} + 19\cdot 29^{5} + 4\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 25 a + 2 + \left(26 a + 17\right)\cdot 29 + \left(3 a + 22\right)\cdot 29^{2} + \left(14 a + 14\right)\cdot 29^{3} + 12\cdot 29^{4} + \left(19 a + 3\right)\cdot 29^{5} + \left(21 a + 22\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 20 + 21\cdot 29 + 8\cdot 29^{2} + 28\cdot 29^{3} + 16\cdot 29^{4} + 21\cdot 29^{5} + 3\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 4 a + 11 + \left(2 a + 10\right)\cdot 29 + \left(25 a + 15\right)\cdot 29^{2} + \left(14 a + 23\right)\cdot 29^{3} + 28 a\cdot 29^{4} + \left(9 a + 11\right)\cdot 29^{5} + \left(7 a + 24\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 13 a + 13 + \left(17 a + 2\right)\cdot 29 + \left(25 a + 23\right)\cdot 29^{2} + \left(21 a + 15\right)\cdot 29^{3} + \left(8 a + 2\right)\cdot 29^{4} + \left(8 a + 18\right)\cdot 29^{5} + \left(28 a + 19\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(4,6)(5,8)$
$(1,4,5)(6,7,8)$
$(1,7,8,5)(2,4,3,6)$
$(1,8)(2,3)(4,6)(5,7)$
$(1,4,8,6)(2,5,3,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,3)(4,6)(5,7)$ $-4$
$12$ $2$ $(1,7)(4,6)(5,8)$ $0$
$8$ $3$ $(1,6,2)(3,8,4)$ $1$
$6$ $4$ $(1,7,8,5)(2,4,3,6)$ $0$
$8$ $6$ $(1,3,6,8,2,4)(5,7)$ $-1$
$6$ $8$ $(1,2,5,6,8,3,7,4)$ $0$
$6$ $8$ $(1,3,5,4,8,2,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.