Properties

Label 4.3e3_7e4_73e2.12t34.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{3} \cdot 7^{4} \cdot 73^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$345463083= 3^{3} \cdot 7^{4} \cdot 73^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - x^{4} + 4 x^{3} - 2 x^{2} - 3 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 14 + \left(4 a + 15\right)\cdot 19 + \left(4 a + 2\right)\cdot 19^{2} + \left(2 a + 11\right)\cdot 19^{3} + \left(4 a + 17\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 5 + \left(11 a + 11\right)\cdot 19 + \left(18 a + 4\right)\cdot 19^{2} + \left(6 a + 12\right)\cdot 19^{3} + \left(6 a + 11\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 11 + \left(14 a + 4\right)\cdot 19 + \left(14 a + 2\right)\cdot 19^{2} + \left(16 a + 9\right)\cdot 19^{3} + 14 a\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 + 6\cdot 19 + 10\cdot 19^{2} + 6\cdot 19^{3} + 16\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 + 2\cdot 19 + 6\cdot 19^{2} + 17\cdot 19^{3} + 18\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 11 + \left(7 a + 16\right)\cdot 19 + 11\cdot 19^{2} + 12 a\cdot 19^{3} + \left(12 a + 11\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$6$ $2$ $(3,5)$ $0$
$9$ $2$ $(3,5)(4,6)$ $0$
$4$ $3$ $(1,3,5)(2,4,6)$ $1$
$4$ $3$ $(1,3,5)$ $-2$
$18$ $4$ $(1,2)(3,6,5,4)$ $0$
$12$ $6$ $(1,4,3,6,5,2)$ $1$
$12$ $6$ $(2,4,6)(3,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.