Properties

Label 4.3e3_7e2_61e2_139e2.12t34.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{3} \cdot 7^{2} \cdot 61^{2} \cdot 139^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$95115022443= 3^{3} \cdot 7^{2} \cdot 61^{2} \cdot 139^{2} $
Artin number field: Splitting field of $f= x^{6} - 96 x^{4} - 27 x^{3} + 2304 x^{2} + 1296 x - 14656 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 9 + 16\cdot 31 + 12\cdot 31^{2} + 18\cdot 31^{3} + 8\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 18 + \left(15 a + 3\right)\cdot 31 + \left(12 a + 20\right)\cdot 31^{2} + \left(12 a + 15\right)\cdot 31^{3} + \left(16 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 4 + \left(15 a + 11\right)\cdot 31 + \left(18 a + 29\right)\cdot 31^{2} + \left(18 a + 27\right)\cdot 31^{3} + \left(14 a + 5\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 24 + 17 a\cdot 31 + \left(25 a + 22\right)\cdot 31^{2} + \left(23 a + 16\right)\cdot 31^{3} + \left(25 a + 20\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 + 14\cdot 31 + 15\cdot 31^{2} + 6\cdot 31^{3} + 24\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 2 + \left(13 a + 16\right)\cdot 31 + \left(5 a + 24\right)\cdot 31^{2} + \left(7 a + 7\right)\cdot 31^{3} + \left(5 a + 17\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,2)$
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,4)(2,5)(3,6)$$0$
$6$$2$$(1,2)$$-2$
$9$$2$$(1,2)(4,5)$$0$
$4$$3$$(1,2,3)$$1$
$4$$3$$(1,2,3)(4,5,6)$$-2$
$18$$4$$(1,5,2,4)(3,6)$$0$
$12$$6$$(1,5,2,6,3,4)$$0$
$12$$6$$(1,2)(4,5,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.