Properties

Label 4.3e3_7e2_61e2.8t29.5
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 3^{3} \cdot 7^{2} \cdot 61^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$4922883= 3^{3} \cdot 7^{2} \cdot 61^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 6 x^{6} - 14 x^{5} + 47 x^{4} - 74 x^{3} + 58 x^{2} - 11 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 1033 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 226 + 738\cdot 1033 + 5\cdot 1033^{2} + 286\cdot 1033^{3} + 40\cdot 1033^{4} + 799\cdot 1033^{5} + 10\cdot 1033^{6} +O\left(1033^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 247 + 217\cdot 1033 + 620\cdot 1033^{2} + 372\cdot 1033^{3} + 10\cdot 1033^{4} + 182\cdot 1033^{5} + 611\cdot 1033^{6} +O\left(1033^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 333 + 102\cdot 1033 + 627\cdot 1033^{2} + 454\cdot 1033^{3} + 907\cdot 1033^{4} + 49\cdot 1033^{5} + 617\cdot 1033^{6} +O\left(1033^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 391 + 261\cdot 1033 + 924\cdot 1033^{2} + 984\cdot 1033^{3} + 340\cdot 1033^{4} + 435\cdot 1033^{5} + 864\cdot 1033^{6} +O\left(1033^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 624 + 173\cdot 1033 + 526\cdot 1033^{2} + 752\cdot 1033^{3} + 840\cdot 1033^{4} + 734\cdot 1033^{5} + 913\cdot 1033^{6} +O\left(1033^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 640 + 402\cdot 1033 + 168\cdot 1033^{2} + 862\cdot 1033^{3} + 664\cdot 1033^{4} + 249\cdot 1033^{5} + 360\cdot 1033^{6} +O\left(1033^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 751 + 203\cdot 1033 + 308\cdot 1033^{2} + 868\cdot 1033^{3} + 340\cdot 1033^{4} + 256\cdot 1033^{5} + 348\cdot 1033^{6} +O\left(1033^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 923 + 999\cdot 1033 + 951\cdot 1033^{2} + 583\cdot 1033^{3} + 986\cdot 1033^{4} + 391\cdot 1033^{5} + 406\cdot 1033^{6} +O\left(1033^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,3)(6,7)$
$(1,4)(5,8)$
$(1,5)(4,8)$
$(1,3)(2,4)(5,6)(7,8)$
$(1,4)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $-4$
$2$ $2$ $(2,3)(6,7)$ $0$
$2$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $0$
$2$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $0$
$4$ $2$ $(1,3)(2,4)(5,6)(7,8)$ $0$
$4$ $2$ $(2,7)(3,6)$ $-2$
$4$ $2$ $(1,4)(6,7)$ $0$
$4$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$4$ $2$ $(1,4)(2,7)(3,6)(5,8)$ $2$
$4$ $4$ $(1,3,4,2)(5,6,8,7)$ $0$
$4$ $4$ $(1,2,4,3)(5,6,8,7)$ $0$
$4$ $4$ $(1,5,4,8)(2,7,3,6)$ $0$
$8$ $4$ $(1,3,5,6)(2,8,7,4)$ $0$
$8$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$
$8$ $4$ $(1,4)(2,7,3,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.