Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 1033 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 13 + 677\cdot 1033 + 62\cdot 1033^{2} + 734\cdot 1033^{3} + 780\cdot 1033^{4} + 493\cdot 1033^{5} + 192\cdot 1033^{6} +O\left(1033^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 89 + 103\cdot 1033 + 238\cdot 1033^{2} + 820\cdot 1033^{3} + 748\cdot 1033^{4} + 916\cdot 1033^{5} + 707\cdot 1033^{6} +O\left(1033^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 144 + 1031\cdot 1033 + 113\cdot 1033^{2} + 148\cdot 1033^{3} + 643\cdot 1033^{4} + 285\cdot 1033^{5} + 1017\cdot 1033^{6} +O\left(1033^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 205 + 390\cdot 1033 + 138\cdot 1033^{2} + 946\cdot 1033^{3} + 215\cdot 1033^{4} + 966\cdot 1033^{5} + 781\cdot 1033^{6} +O\left(1033^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 416 + 543\cdot 1033 + 749\cdot 1033^{2} + 164\cdot 1033^{3} + 603\cdot 1033^{4} + 784\cdot 1033^{5} + 226\cdot 1033^{6} +O\left(1033^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 557 + 954\cdot 1033 + 448\cdot 1033^{2} + 527\cdot 1033^{3} + 181\cdot 1033^{4} + 797\cdot 1033^{5} + 758\cdot 1033^{6} +O\left(1033^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 799 + 820\cdot 1033 + 99\cdot 1033^{2} + 12\cdot 1033^{3} + 832\cdot 1033^{4} + 665\cdot 1033^{5} + 293\cdot 1033^{6} +O\left(1033^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 877 + 644\cdot 1033 + 214\cdot 1033^{2} + 779\cdot 1033^{3} + 126\cdot 1033^{4} + 255\cdot 1033^{5} + 153\cdot 1033^{6} +O\left(1033^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,4)(3,5)$ |
| $(1,2)(3,7)(4,6)(5,8)$ |
| $(2,4)(7,8)$ |
| $(2,7)(4,8)$ |
| $(1,6)(7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,6)(2,4)(3,5)(7,8)$ |
$-4$ |
| $2$ |
$2$ |
$(1,3)(2,7)(4,8)(5,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,8)(4,7)(5,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(3,5)$ |
$0$ |
| $4$ |
$2$ |
$(2,4)(3,5)$ |
$0$ |
| $4$ |
$2$ |
$(1,2)(3,7)(4,6)(5,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,3)(5,6)$ |
$2$ |
| $4$ |
$2$ |
$(1,5)(2,4)(3,6)(7,8)$ |
$-2$ |
| $4$ |
$2$ |
$(1,2)(3,8)(4,6)(5,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,6,4)(3,8,5,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,6,4)(3,7,5,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,3,6,5)(2,7,4,8)$ |
$0$ |
| $8$ |
$4$ |
$(1,7,3,2)(4,6,8,5)$ |
$0$ |
| $8$ |
$4$ |
$(1,7,3,4)(2,6,8,5)$ |
$0$ |
| $8$ |
$4$ |
$(1,3,6,5)(2,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.