Properties

Label 4.3e3_7e2_61e2.8t29.1c1
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 3^{3} \cdot 7^{2} \cdot 61^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$4922883= 3^{3} \cdot 7^{2} \cdot 61^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 9 x^{6} + 4 x^{5} + 29 x^{4} - 6 x^{3} - 24 x^{2} + 6 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 1033 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 13 + 677\cdot 1033 + 62\cdot 1033^{2} + 734\cdot 1033^{3} + 780\cdot 1033^{4} + 493\cdot 1033^{5} + 192\cdot 1033^{6} +O\left(1033^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 89 + 103\cdot 1033 + 238\cdot 1033^{2} + 820\cdot 1033^{3} + 748\cdot 1033^{4} + 916\cdot 1033^{5} + 707\cdot 1033^{6} +O\left(1033^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 144 + 1031\cdot 1033 + 113\cdot 1033^{2} + 148\cdot 1033^{3} + 643\cdot 1033^{4} + 285\cdot 1033^{5} + 1017\cdot 1033^{6} +O\left(1033^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 205 + 390\cdot 1033 + 138\cdot 1033^{2} + 946\cdot 1033^{3} + 215\cdot 1033^{4} + 966\cdot 1033^{5} + 781\cdot 1033^{6} +O\left(1033^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 416 + 543\cdot 1033 + 749\cdot 1033^{2} + 164\cdot 1033^{3} + 603\cdot 1033^{4} + 784\cdot 1033^{5} + 226\cdot 1033^{6} +O\left(1033^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 557 + 954\cdot 1033 + 448\cdot 1033^{2} + 527\cdot 1033^{3} + 181\cdot 1033^{4} + 797\cdot 1033^{5} + 758\cdot 1033^{6} +O\left(1033^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 799 + 820\cdot 1033 + 99\cdot 1033^{2} + 12\cdot 1033^{3} + 832\cdot 1033^{4} + 665\cdot 1033^{5} + 293\cdot 1033^{6} +O\left(1033^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 877 + 644\cdot 1033 + 214\cdot 1033^{2} + 779\cdot 1033^{3} + 126\cdot 1033^{4} + 255\cdot 1033^{5} + 153\cdot 1033^{6} +O\left(1033^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,4)(3,5)$
$(1,2)(3,7)(4,6)(5,8)$
$(2,4)(7,8)$
$(2,7)(4,8)$
$(1,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,6)(2,4)(3,5)(7,8)$$-4$
$2$$2$$(1,3)(2,7)(4,8)(5,6)$$0$
$2$$2$$(1,3)(2,8)(4,7)(5,6)$$0$
$2$$2$$(1,6)(3,5)$$0$
$4$$2$$(2,4)(3,5)$$0$
$4$$2$$(1,2)(3,7)(4,6)(5,8)$$0$
$4$$2$$(1,3)(5,6)$$-2$
$4$$2$$(1,5)(2,4)(3,6)(7,8)$$2$
$4$$2$$(1,2)(3,8)(4,6)(5,7)$$0$
$4$$4$$(1,2,6,4)(3,8,5,7)$$0$
$4$$4$$(1,2,6,4)(3,7,5,8)$$0$
$4$$4$$(1,3,6,5)(2,7,4,8)$$0$
$8$$4$$(1,7,3,2)(4,6,8,5)$$0$
$8$$4$$(1,7,3,4)(2,6,8,5)$$0$
$8$$4$$(1,3,6,5)(2,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.