Properties

Label 4.3e3_7e2_547e2.12t34.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{3} \cdot 7^{2} \cdot 547^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$395853507= 3^{3} \cdot 7^{2} \cdot 547^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 2 x^{4} + 4 x^{3} + x^{2} - 6 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 28 a + 29 + \left(11 a + 14\right)\cdot 31 + \left(13 a + 23\right)\cdot 31^{2} + \left(28 a + 13\right)\cdot 31^{3} + \left(15 a + 1\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 3 + \left(12 a + 15\right)\cdot 31 + \left(18 a + 29\right)\cdot 31^{2} + \left(30 a + 26\right)\cdot 31^{3} + \left(3 a + 17\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 23 + \left(18 a + 29\right)\cdot 31 + \left(12 a + 22\right)\cdot 31^{2} + 7\cdot 31^{3} + \left(27 a + 26\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 23 + \left(19 a + 10\right)\cdot 31 + \left(17 a + 7\right)\cdot 31^{2} + \left(2 a + 26\right)\cdot 31^{3} + \left(15 a + 4\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 + 22\cdot 31 + 6\cdot 31^{2} + 13\cdot 31^{3} + 6\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 11 + 3\cdot 31^{2} + 5\cdot 31^{3} + 5\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,4)$
$(1,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$6$ $2$ $(2,3)$ $0$
$9$ $2$ $(1,4)(2,3)$ $0$
$4$ $3$ $(1,4,5)(2,3,6)$ $1$
$4$ $3$ $(2,3,6)$ $-2$
$18$ $4$ $(1,2,4,3)(5,6)$ $0$
$12$ $6$ $(1,2,4,3,5,6)$ $1$
$12$ $6$ $(1,4,5)(2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.