Properties

Label 4.3e3_7e2_439e2.12t34.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{3} \cdot 7^{2} \cdot 439^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$254969883= 3^{3} \cdot 7^{2} \cdot 439^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 4 x^{4} + 4 x^{3} + 4 x^{2} - 6 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: $ x^{2} + 108 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 49 a + 105 + \left(43 a + 22\right)\cdot 109 + \left(95 a + 39\right)\cdot 109^{2} + \left(6 a + 4\right)\cdot 109^{3} + \left(25 a + 79\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 41 a + 105 + \left(99 a + 45\right)\cdot 109 + \left(69 a + 61\right)\cdot 109^{2} + \left(106 a + 65\right)\cdot 109^{3} + \left(69 a + 88\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 + 72\cdot 109 + 32\cdot 109^{2} + 5\cdot 109^{3} + 108\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 68 a + 37 + \left(9 a + 104\right)\cdot 109 + \left(39 a + 31\right)\cdot 109^{2} + \left(2 a + 102\right)\cdot 109^{3} + \left(39 a + 51\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 + 64\cdot 109 + 70\cdot 109^{2} + 15\cdot 109^{3} + 11\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 60 a + 45 + \left(65 a + 17\right)\cdot 109 + \left(13 a + 91\right)\cdot 109^{2} + \left(102 a + 24\right)\cdot 109^{3} + \left(83 a + 97\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $-2$
$6$ $2$ $(3,4)$ $0$
$9$ $2$ $(3,4)(5,6)$ $0$
$4$ $3$ $(1,5,6)(2,3,4)$ $1$
$4$ $3$ $(1,5,6)$ $-2$
$18$ $4$ $(1,2)(3,6,4,5)$ $0$
$12$ $6$ $(1,3,5,4,6,2)$ $1$
$12$ $6$ $(1,5,6)(3,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.