Properties

Label 4.3e3_7_61e3.8t35.2
Dimension 4
Group $C_2 \wr C_2\wr C_2$
Conductor $ 3^{3} \cdot 7 \cdot 61^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2 \wr C_2\wr C_2$
Conductor:$42899409= 3^{3} \cdot 7 \cdot 61^{3} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - x^{6} + 2 x^{5} + x^{4} - 2 x^{3} - x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2 \wr C_2\wr C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 5 + \left(23 a + 7\right)\cdot 31 + \left(25 a + 16\right)\cdot 31^{2} + \left(19 a + 2\right)\cdot 31^{3} + \left(2 a + 24\right)\cdot 31^{4} + \left(13 a + 19\right)\cdot 31^{5} + \left(27 a + 23\right)\cdot 31^{6} + \left(12 a + 12\right)\cdot 31^{7} + \left(7 a + 3\right)\cdot 31^{8} + \left(11 a + 6\right)\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 29 a + 28 + \left(19 a + 18\right)\cdot 31 + \left(19 a + 10\right)\cdot 31^{2} + \left(14 a + 27\right)\cdot 31^{3} + \left(11 a + 7\right)\cdot 31^{4} + \left(22 a + 18\right)\cdot 31^{5} + \left(9 a + 2\right)\cdot 31^{6} + \left(3 a + 21\right)\cdot 31^{7} + \left(5 a + 18\right)\cdot 31^{8} + \left(25 a + 14\right)\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 30 a + 19 + \left(26 a + 18\right)\cdot 31 + \left(18 a + 8\right)\cdot 31^{2} + \left(28 a + 6\right)\cdot 31^{3} + \left(12 a + 11\right)\cdot 31^{4} + \left(27 a + 22\right)\cdot 31^{5} + \left(14 a + 14\right)\cdot 31^{6} + \left(16 a + 11\right)\cdot 31^{7} + \left(13 a + 14\right)\cdot 31^{8} + \left(9 a + 30\right)\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 14 + \left(7 a + 3\right)\cdot 31 + \left(5 a + 13\right)\cdot 31^{2} + \left(11 a + 16\right)\cdot 31^{3} + \left(28 a + 9\right)\cdot 31^{4} + \left(17 a + 12\right)\cdot 31^{5} + \left(3 a + 3\right)\cdot 31^{6} + \left(18 a + 11\right)\cdot 31^{7} + \left(23 a + 5\right)\cdot 31^{8} + \left(19 a + 21\right)\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 28 + 24\cdot 31 + 6\cdot 31^{2} + 2\cdot 31^{3} + 26\cdot 31^{4} + 4\cdot 31^{5} + 25\cdot 31^{6} + 24\cdot 31^{7} + 21\cdot 31^{8} + 8\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 24 + \left(11 a + 29\right)\cdot 31 + \left(11 a + 29\right)\cdot 31^{2} + \left(16 a + 5\right)\cdot 31^{3} + \left(19 a + 16\right)\cdot 31^{4} + \left(8 a + 20\right)\cdot 31^{5} + \left(21 a + 30\right)\cdot 31^{6} + \left(27 a + 17\right)\cdot 31^{7} + \left(25 a + 25\right)\cdot 31^{8} + \left(5 a + 28\right)\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 7 }$ $=$ $ a + 17 + \left(4 a + 11\right)\cdot 31 + \left(12 a + 19\right)\cdot 31^{2} + \left(2 a + 13\right)\cdot 31^{3} + \left(18 a + 8\right)\cdot 31^{4} + \left(3 a + 2\right)\cdot 31^{5} + \left(16 a + 17\right)\cdot 31^{6} + \left(14 a + 29\right)\cdot 31^{7} + \left(17 a + 24\right)\cdot 31^{8} + \left(21 a + 4\right)\cdot 31^{9} +O\left(31^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 21 + 9\cdot 31 + 19\cdot 31^{2} + 18\cdot 31^{3} + 20\cdot 31^{4} + 23\cdot 31^{5} + 6\cdot 31^{6} + 26\cdot 31^{7} + 9\cdot 31^{8} + 9\cdot 31^{9} +O\left(31^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)$
$(6,7)$
$(2,6)(3,7)$
$(1,2)(3,4)(5,6)(7,8)$
$(2,3)$
$(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $-4$
$2$ $2$ $(1,4)(5,8)$ $0$
$4$ $2$ $(1,4)$ $-2$
$4$ $2$ $(1,4)(2,3)$ $0$
$4$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$4$ $2$ $(1,5)(4,8)$ $2$
$4$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $-2$
$4$ $2$ $(1,4)(2,3)(5,8)$ $2$
$8$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$8$ $2$ $(1,4)(2,6)(3,7)$ $0$
$4$ $4$ $(1,8,4,5)(2,7,3,6)$ $0$
$4$ $4$ $(1,8,4,5)$ $-2$
$4$ $4$ $(1,4)(2,7,3,6)(5,8)$ $2$
$8$ $4$ $(1,3,4,2)(5,7,8,6)$ $0$
$8$ $4$ $(1,8,4,5)(2,6)(3,7)$ $0$
$8$ $4$ $(1,8,4,5)(2,3)$ $0$
$16$ $4$ $(1,3,4,2)(5,6)(7,8)$ $0$
$16$ $4$ $(1,6,5,2)(3,4,7,8)$ $0$
$16$ $8$ $(1,7,8,3,4,6,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.