Properties

Label 4.3e3_619.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{3} \cdot 619 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$16713= 3^{3} \cdot 619 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 3 x^{4} - 35 x^{3} + 43 x^{2} + 78 x - 84 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 26 + \left(17 a + 21\right)\cdot 31 + \left(7 a + 11\right)\cdot 31^{2} + \left(17 a + 13\right)\cdot 31^{3} + 5 a\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 1 + \left(8 a + 29\right)\cdot 31 + \left(25 a + 25\right)\cdot 31^{2} + \left(5 a + 21\right)\cdot 31^{3} + \left(26 a + 30\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 23\cdot 31 + 9\cdot 31^{2} + 8\cdot 31^{3} + 5\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 22\cdot 31 + 29\cdot 31^{2} + 16\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 13 + \left(13 a + 16\right)\cdot 31 + \left(23 a + 9\right)\cdot 31^{2} + \left(13 a + 9\right)\cdot 31^{3} + \left(25 a + 25\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 9 + \left(22 a + 10\right)\cdot 31 + \left(5 a + 6\right)\cdot 31^{2} + \left(25 a + 8\right)\cdot 31^{3} + \left(4 a + 15\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,5)$
$(1,2)(3,4)(5,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $2$
$6$ $2$ $(1,3)$ $0$
$9$ $2$ $(1,3)(2,4)$ $0$
$4$ $3$ $(1,3,5)$ $-2$
$4$ $3$ $(1,3,5)(2,4,6)$ $1$
$18$ $4$ $(1,4,3,2)(5,6)$ $0$
$12$ $6$ $(1,4,3,6,5,2)$ $-1$
$12$ $6$ $(1,3)(2,4,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.