Properties

Label 4.3e3_5e8.5t5.2
Dimension 4
Group $\PGL(2,5)$
Conductor $ 3^{3} \cdot 5^{8}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PGL(2,5)$
Conductor:$10546875= 3^{3} \cdot 5^{8} $
Artin number field: Splitting field of $f= x^{6} - 5 x^{4} + 15 x^{2} - 11 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 4 + \left(11 a + 6\right)\cdot 19 + \left(a + 15\right)\cdot 19^{2} + \left(18 a + 11\right)\cdot 19^{3} + \left(18 a + 10\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 2\cdot 19 + 13\cdot 19^{2} + 8\cdot 19^{3} + 17\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 10 + \left(18 a + 10\right)\cdot 19 + \left(7 a + 2\right)\cdot 19^{2} + \left(16 a + 18\right)\cdot 19^{3} + \left(12 a + 14\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 3 + 17\cdot 19 + \left(11 a + 10\right)\cdot 19^{2} + \left(2 a + 7\right)\cdot 19^{3} + \left(6 a + 11\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 + 6\cdot 19 + 9\cdot 19^{2} + 19^{3} + 10\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 7 + \left(7 a + 14\right)\cdot 19 + \left(17 a + 5\right)\cdot 19^{2} + 9\cdot 19^{3} + 11\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,3)(4,5)$
$(1,3,5,4,6,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,6)(2,3)(4,5)$ $2$
$15$ $2$ $(3,5)(4,6)$ $0$
$20$ $3$ $(1,5,6)(2,3,4)$ $1$
$30$ $4$ $(3,6,5,4)$ $0$
$24$ $5$ $(1,2,5,6,3)$ $-1$
$20$ $6$ $(1,3,5,4,6,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.