Properties

Label 4.3e3_463e2.10t12.2c1
Dimension 4
Group $\PGL(2,5)$
Conductor $ 3^{3} \cdot 463^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PGL(2,5)$
Conductor:$5787963= 3^{3} \cdot 463^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 4 x^{4} - 12 x^{3} + 15 x^{2} - 9 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 28 + 16\cdot 43 + 31\cdot 43^{2} + 15\cdot 43^{3} + 32\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 37 a + 14 + \left(5 a + 20\right)\cdot 43 + \left(26 a + 31\right)\cdot 43^{2} + \left(19 a + 33\right)\cdot 43^{3} + \left(a + 29\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 + 40\cdot 43 + 12\cdot 43^{3} + 25\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 8 + \left(37 a + 32\right)\cdot 43 + \left(16 a + 8\right)\cdot 43^{2} + \left(23 a + 27\right)\cdot 43^{3} + \left(41 a + 11\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 42 a + 28 + \left(11 a + 24\right)\cdot 43 + \left(18 a + 3\right)\cdot 43^{2} + \left(33 a + 34\right)\cdot 43^{3} + \left(25 a + 18\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a + 27 + \left(31 a + 37\right)\cdot 43 + \left(24 a + 9\right)\cdot 43^{2} + \left(9 a + 6\right)\cdot 43^{3} + \left(17 a + 11\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,4,3,2,5)$
$(1,4)(2,3)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,4)(2,3)(5,6)$$-2$
$15$$2$$(1,5)(2,3)$$0$
$20$$3$$(1,4,2)(3,5,6)$$1$
$30$$4$$(1,2,5,3)$$0$
$24$$5$$(1,6,2,4,5)$$-1$
$20$$6$$(1,6,4,3,2,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.