Properties

Label 4.3e3_43e2_79e2.12t36.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{3} \cdot 43^{2} \cdot 79^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$311569443= 3^{3} \cdot 43^{2} \cdot 79^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 3 x^{4} - 51 x^{3} + 59 x^{2} + 110 x - 93 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ a + 3 + \left(2 a + 8\right)\cdot 13 + \left(6 a + 6\right)\cdot 13^{2} + \left(12 a + 9\right)\cdot 13^{3} + \left(8 a + 8\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 7 + \left(2 a + 1\right)\cdot 13 + \left(4 a + 8\right)\cdot 13^{2} + \left(11 a + 3\right)\cdot 13^{3} + \left(a + 5\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 10 + 10 a\cdot 13 + \left(8 a + 10\right)\cdot 13^{2} + \left(a + 10\right)\cdot 13^{3} + \left(11 a + 8\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 4 + \left(10 a + 9\right)\cdot 13 + \left(6 a + 10\right)\cdot 13^{2} + 2\cdot 13^{3} + \left(4 a + 5\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 + 10\cdot 13 + 7\cdot 13^{2} + 11\cdot 13^{3} + 11\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 7 + 8\cdot 13 + 8\cdot 13^{2} + 12\cdot 13^{4} +O\left(13^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,6)$
$(1,2)(3,4)(5,6)$
$(1,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $0$
$6$ $2$ $(1,4)$ $-2$
$9$ $2$ $(1,4)(2,3)$ $0$
$4$ $3$ $(1,4,6)(2,3,5)$ $-2$
$4$ $3$ $(2,3,5)$ $1$
$18$ $4$ $(1,3,4,2)(5,6)$ $0$
$12$ $6$ $(1,2,4,3,6,5)$ $0$
$12$ $6$ $(1,4)(2,3,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.