Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 13 a + \left(9 a + 11\right)\cdot 19 + \left(7 a + 4\right)\cdot 19^{2} + \left(8 a + 7\right)\cdot 19^{3} + \left(18 a + 12\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 6 a + 13 + \left(9 a + 7\right)\cdot 19 + \left(11 a + 2\right)\cdot 19^{2} + \left(10 a + 8\right)\cdot 19^{3} + 3\cdot 19^{4} +O\left(19^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 7 + 12\cdot 19^{2} + 3\cdot 19^{3} + 3\cdot 19^{4} +O\left(19^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 16 a + 18 + \left(10 a + 3\right)\cdot 19 + \left(8 a + 6\right)\cdot 19^{2} + 12\cdot 19^{3} + \left(6 a + 14\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 6 + 16\cdot 19 + 8\cdot 19^{2} + 2\cdot 19^{3} + 3\cdot 19^{4} +O\left(19^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 3 a + 15 + \left(8 a + 17\right)\cdot 19 + \left(10 a + 3\right)\cdot 19^{2} + \left(18 a + 4\right)\cdot 19^{3} + \left(12 a + 1\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(4,5,6)$ |
| $(1,4)(2,5)(3,6)$ |
| $(4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $6$ |
$2$ |
$(1,4)(2,5)(3,6)$ |
$0$ |
| $6$ |
$2$ |
$(4,5)$ |
$-2$ |
| $9$ |
$2$ |
$(1,2)(4,5)$ |
$0$ |
| $4$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$-2$ |
| $4$ |
$3$ |
$(1,2,3)$ |
$1$ |
| $18$ |
$4$ |
$(1,4,2,5)(3,6)$ |
$0$ |
| $12$ |
$6$ |
$(1,5,2,6,3,4)$ |
$0$ |
| $12$ |
$6$ |
$(1,2,3)(4,5)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.