Properties

Label 4.3e3_3253e2.12t34.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{3} \cdot 3253^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$285714243= 3^{3} \cdot 3253^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 5 x^{4} - x^{3} - 2 x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 37 a + 50 + \left(47 a + 15\right)\cdot 67 + \left(4 a + 33\right)\cdot 67^{2} + \left(14 a + 62\right)\cdot 67^{3} + \left(13 a + 9\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 56 + 32\cdot 67 + 51\cdot 67^{2} + 25\cdot 67^{3} + 27\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 49 a + 57 + \left(2 a + 7\right)\cdot 67 + \left(23 a + 41\right)\cdot 67^{2} + \left(45 a + 41\right)\cdot 67^{3} + \left(12 a + 4\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 59 + 5\cdot 67 + 7\cdot 67^{2} + 25\cdot 67^{3} + 33\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 18 a + 52 + \left(64 a + 36\right)\cdot 67 + \left(43 a + 63\right)\cdot 67^{2} + \left(21 a + 65\right)\cdot 67^{3} + \left(54 a + 9\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 30 a + 64 + \left(19 a + 34\right)\cdot 67 + \left(62 a + 4\right)\cdot 67^{2} + \left(52 a + 47\right)\cdot 67^{3} + \left(53 a + 48\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,6)$
$(1,2)(3,4)(5,6)$
$(1,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$6$ $2$ $(3,5)$ $0$
$9$ $2$ $(3,5)(4,6)$ $0$
$4$ $3$ $(1,4,6)$ $-2$
$4$ $3$ $(1,4,6)(2,3,5)$ $1$
$18$ $4$ $(1,2)(3,6,5,4)$ $0$
$12$ $6$ $(1,3,4,5,6,2)$ $1$
$12$ $6$ $(1,4,6)(3,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.