Properties

Label 4.3e3_311e2.10t12.1c1
Dimension 4
Group $S_5$
Conductor $ 3^{3} \cdot 311^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$2611467= 3^{3} \cdot 311^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 8 x^{3} - 2 x^{2} - 28 x - 23 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 61 a + 18 + \left(66 a + 45\right)\cdot 67 + \left(59 a + 13\right)\cdot 67^{2} + \left(41 a + 16\right)\cdot 67^{3} + \left(20 a + 17\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 58 a + 43 + \left(2 a + 8\right)\cdot 67 + \left(33 a + 26\right)\cdot 67^{2} + \left(66 a + 54\right)\cdot 67^{3} + \left(59 a + 56\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 61 + 50\cdot 67 + \left(7 a + 52\right)\cdot 67^{2} + \left(25 a + 56\right)\cdot 67^{3} + \left(46 a + 57\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 + 20\cdot 67^{2} + 54\cdot 67^{3} + 39\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 7 + \left(64 a + 29\right)\cdot 67 + \left(33 a + 21\right)\cdot 67^{2} + 19\cdot 67^{3} + \left(7 a + 29\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$-2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.