Properties

Label 4.3e3_2617e2.12t36.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{3} \cdot 2617^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$184914603= 3^{3} \cdot 2617^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 9 x^{4} - 39 x^{3} + 74 x^{2} + 245 x - 54 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 27 a + 33 + \left(27 a + 6\right)\cdot 67 + \left(18 a + 26\right)\cdot 67^{2} + \left(8 a + 30\right)\cdot 67^{3} + \left(25 a + 38\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 40 a + 7 + \left(39 a + 22\right)\cdot 67 + \left(48 a + 5\right)\cdot 67^{2} + \left(58 a + 45\right)\cdot 67^{3} + \left(41 a + 63\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 65 a + 58 + \left(4 a + 21\right)\cdot 67 + \left(14 a + 33\right)\cdot 67^{2} + \left(18 a + 66\right)\cdot 67^{3} + \left(17 a + 16\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 + 38\cdot 67 + 35\cdot 67^{2} + 58\cdot 67^{3} + 31\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 50 + \left(62 a + 43\right)\cdot 67 + \left(52 a + 17\right)\cdot 67^{2} + \left(48 a + 58\right)\cdot 67^{3} + 49 a\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 + 67 + 16\cdot 67^{2} + 9\cdot 67^{3} + 49\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,5)(4,6)$
$(3,5,6)$
$(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,5)(4,6)$ $0$
$6$ $2$ $(2,4)$ $-2$
$9$ $2$ $(2,4)(5,6)$ $0$
$4$ $3$ $(3,5,6)$ $1$
$4$ $3$ $(1,2,4)(3,5,6)$ $-2$
$18$ $4$ $(1,3)(2,6,4,5)$ $0$
$12$ $6$ $(1,3,2,5,4,6)$ $0$
$12$ $6$ $(2,4)(3,5,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.