Properties

Label 4.3e3_19927e2.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{3} \cdot 19927^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$10721303883= 3^{3} \cdot 19927^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 9 x^{4} - 7 x^{3} + 22 x^{2} - 12 x + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: $ x^{2} + 6 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 3\cdot 7 + 7^{2} + 2\cdot 7^{3} + 2\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 2 }$ $=$ $ a + 4 + 4\cdot 7 + \left(5 a + 3\right)\cdot 7^{2} + \left(4 a + 4\right)\cdot 7^{3} + \left(4 a + 2\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 3 + 6\cdot 7 + 7^{2} +O\left(7^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 5 + \left(6 a + 3\right)\cdot 7 + \left(a + 1\right)\cdot 7^{2} + \left(2 a + 4\right)\cdot 7^{3} + \left(2 a + 2\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 6\cdot 7 + 4 a\cdot 7^{2} + \left(5 a + 4\right)\cdot 7^{3} + \left(2 a + 4\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 2 + \left(6 a + 4\right)\cdot 7 + \left(2 a + 4\right)\cdot 7^{2} + \left(a + 5\right)\cdot 7^{3} + \left(4 a + 1\right)\cdot 7^{4} +O\left(7^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)$
$(1,3)(2,5)(4,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,5)(4,6)$$2$
$6$$2$$(2,4)$$0$
$9$$2$$(2,4)(5,6)$$0$
$4$$3$$(1,2,4)(3,5,6)$$1$
$4$$3$$(3,5,6)$$-2$
$18$$4$$(1,3)(2,6,4,5)$$0$
$12$$6$$(1,3,2,5,4,6)$$-1$
$12$$6$$(2,4)(3,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.